This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326584 #29 Oct 06 2021 03:51:57 %S A326584 1,2,3,1,5,1,7,1,3,1,11,1,13,1,3,1,17,1,19,1,3,1,23,1,5,1,3,1,29,1,31, %T A326584 1,3,1,1,1,37,1,3,1,41,1,43,1,15,1,47,1,7,1,3,1,53,1,1,1,3,1,59,1,61, %U A326584 1,3,1,5,1,67,1,3,1,71,1,73,1,3,1,1,1,79,1 %N A326584 a(n) = gcd(n*N(n-1), D(n-1)), with N(n)/D(n) = B(n) the n-th Bernoulli number. %C A326584 Conjectures: %C A326584 (1) If n > 1 then a(n) = n <=> n is prime or Carmichael (A002997). %C A326584 (2) If n is odd then a(n) = 1 <=> n = 1 or is a term of A121707. %C A326584 (3) The fixed points of n^2/a(n) are exactly the numbers satisfying Korselt's criterion (compare A326578 and A324050). %H A326584 Peter Luschny, <a href="/A326584/b326584.txt">Table of n, a(n) for n = 1..10000</a> %F A326584 a(n) divides n, n/a(n) = A326478(n). %e A326584 a(559) = 1 and 559 is in A121707. %e A326584 a(561) = 561 and 561 is Carmichael. %e A326584 a(563) = 563 and 563 is prime. %p A326584 db := n -> denom(bernoulli(n)): nb := n -> numer(bernoulli(n)): %p A326584 a := n -> igcd(n*nb(n-1), db(n-1)): seq(a(n), n=1..80); %t A326584 a[n_] := With[{b = BernoulliB[n-1]}, GCD[n Numerator[b], Denominator[b]]]; %t A326584 Array[a, 80] (* _Jean-François Alcover_, Jul 21 2019 *) %o A326584 (PARI) a(n) = my(b=bernfrac(n-1)); gcd(n*numerator(b), denominator(b)); \\ _Michel Marcus_, Jul 19 2019 %Y A326584 Cf. A000040, A002997, A121707, A027641/A027642 (Bernoulli), A324050 (Korselt). %Y A326584 Cf. A326578, A326478, A326579, A326577. %K A326584 nonn %O A326584 1,2 %A A326584 _Peter Luschny_, Jul 19 2019