A326608 Numbers m such that m | A000385(m-1) = Sum_{k=1..m-1} sigma(k) * sigma(m-k).
1, 3, 40, 84, 124, 318, 496, 672, 732, 790, 1320, 1488, 3154, 4464, 5271, 8128, 9156, 9888, 10880, 13392, 14760, 16392, 17019, 22366, 24384, 39424, 57240, 67488, 68237, 73276, 93825, 95728, 106428, 115330, 128982, 138176, 143256, 143780, 144210, 154432, 156360
Offset: 1
Keywords
Examples
3 is in the sequence since 3 is a divisor for A000385(3-1) = 6.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
aQ[n_] := Divisible[5 * DivisorSigma[3, n] - (6n - 1) * DivisorSigma[1, n], 12n]; Select[Range[2*10^5], aQ]
Comments