This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326611 #44 May 14 2021 06:20:56 %S A326611 2,1,1,4,3,5,10,9,15,40,41,65,162,189,321,780,919,1681,4034,5281,9259, %T A326611 23936,30665,57601,143602,199577,367561,959236,1323243,2585133, %U A326611 6580650,9609145,18433799,49030248,71211721,142636377,371147842,566921925,1122881889,3024341084,4583822647,9446124313 %N A326611 Number of arrangements of rooks with rotational symmetry on a triangular grid with n grid points on each side and no two rooks on the same row, column or diagonal. %e A326611 The four cases for n = 4 are: %e A326611 o o o o %e A326611 o o o o X o o X %e A326611 o o o o X o o o X X o o %e A326611 o o o o o o o o o X o o o o X o %o A326611 (Python) %o A326611 def solve(cli): %o A326611 count = 1 %o A326611 for k in range(len(cli)): %o A326611 x,y,z = cli[k] %o A326611 clo = [] %o A326611 for c in cli[k+1:]: %o A326611 if (not x in c) and (not y in c) and (not z in c): %o A326611 clo.append(c) %o A326611 count += 2*solve(clo) %o A326611 return count %o A326611 def A326611(n): %o A326611 c0 = [] %o A326611 for x in range(n): %o A326611 for y in range(x+1,n): %o A326611 z = n-1-x-y %o A326611 if z>y: c0.append((x,y,z)) %o A326611 count = solve(c0) %o A326611 if n%3 == 1: %o A326611 c1 = [c for c in c0 if not n//3 in c] %o A326611 count += solve(c1) %o A326611 return count %o A326611 # _Bert Dobbelaere_, May 14 2021 %Y A326611 Cf. A283117, A289709. %K A326611 nonn %O A326611 1,1 %A A326611 _Andrew Howroyd_, Sep 12 2019 %E A326611 More terms from _Bert Dobbelaere_, May 14 2021