This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326621 #4 Jul 15 2019 01:44:40 %S A326621 2,3,4,5,7,8,9,10,11,13,16,17,19,20,21,22,23,25,27,29,30,31,32,34,37, %T A326621 39,40,41,43,44,46,47,49,50,53,55,57,59,60,61,62,63,64,67,68,71,73,78, %U A326621 79,80,81,82,83,85,87,88,89,90,91,92,94,97,100,101,103,105 %N A326621 Numbers n such that the average of the set of distinct prime indices of n is an integer. %C A326621 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A326621 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose distinct parts have an integer average. %e A326621 The sequence of terms together with their prime indices begins: %e A326621 2: {1} %e A326621 3: {2} %e A326621 4: {1,1} %e A326621 5: {3} %e A326621 7: {4} %e A326621 8: {1,1,1} %e A326621 9: {2,2} %e A326621 10: {1,3} %e A326621 11: {5} %e A326621 13: {6} %e A326621 16: {1,1,1,1} %e A326621 17: {7} %e A326621 19: {8} %e A326621 20: {1,1,3} %e A326621 21: {2,4} %e A326621 22: {1,5} %e A326621 23: {9} %e A326621 25: {3,3} %e A326621 27: {2,2,2} %e A326621 29: {10} %t A326621 Select[Range[2,100],IntegerQ[Mean[PrimePi/@First/@FactorInteger[#]]]&] %Y A326621 Positions of 1's in A326620. %Y A326621 Cf. A051293, A056239, A067538, A078174, A078175, A102627, A112798, A326567/A326568, A326619/A326620, A326622. %K A326621 nonn %O A326621 1,1 %A A326621 _Gus Wiseman_, Jul 14 2019