cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326623 Heinz numbers of integer partitions whose geometric mean is an integer.

This page as a plain text file.
%I A326623 #7 Jul 15 2019 01:44:56
%S A326623 2,3,4,5,7,8,9,11,13,14,16,17,19,23,25,27,29,31,32,37,41,42,43,46,47,
%T A326623 49,53,57,59,61,64,67,71,73,76,79,81,83,89,97,101,103,106,107,109,113,
%U A326623 121,125,126,127,128,131,137,139,149,151,157,161,163,167,169
%N A326623 Heinz numbers of integer partitions whose geometric mean is an integer.
%C A326623 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%H A326623 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e A326623 The sequence of terms together with their prime indices begins:
%e A326623     2: {1}
%e A326623     3: {2}
%e A326623     4: {1,1}
%e A326623     5: {3}
%e A326623     7: {4}
%e A326623     8: {1,1,1}
%e A326623     9: {2,2}
%e A326623    11: {5}
%e A326623    13: {6}
%e A326623    14: {1,4}
%e A326623    16: {1,1,1,1}
%e A326623    17: {7}
%e A326623    19: {8}
%e A326623    23: {9}
%e A326623    25: {3,3}
%e A326623    27: {2,2,2}
%e A326623    29: {10}
%e A326623    31: {11}
%e A326623    32: {1,1,1,1,1}
%e A326623    37: {12}
%t A326623 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326623 Select[Range[100],IntegerQ[GeometricMean[primeMS[#]]]&]
%Y A326623 The enumeration of these partitions by sum is given by A067539.
%Y A326623 Heinz numbers of partitions with integer average are A316413.
%Y A326623 The case without prime powers is A326624.
%Y A326623 Subsets whose geometric mean is an integer are A326027.
%Y A326623 Factorizations with integer geometric mean are A326028.
%Y A326623 Cf. A001055, A078175, A102627, A326567/A326568, A326622, A326625.
%K A326623 nonn
%O A326623 1,1
%A A326623 _Gus Wiseman_, Jul 14 2019