This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326623 #7 Jul 15 2019 01:44:56 %S A326623 2,3,4,5,7,8,9,11,13,14,16,17,19,23,25,27,29,31,32,37,41,42,43,46,47, %T A326623 49,53,57,59,61,64,67,71,73,76,79,81,83,89,97,101,103,106,107,109,113, %U A326623 121,125,126,127,128,131,137,139,149,151,157,161,163,167,169 %N A326623 Heinz numbers of integer partitions whose geometric mean is an integer. %C A326623 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A326623 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A326623 The sequence of terms together with their prime indices begins: %e A326623 2: {1} %e A326623 3: {2} %e A326623 4: {1,1} %e A326623 5: {3} %e A326623 7: {4} %e A326623 8: {1,1,1} %e A326623 9: {2,2} %e A326623 11: {5} %e A326623 13: {6} %e A326623 14: {1,4} %e A326623 16: {1,1,1,1} %e A326623 17: {7} %e A326623 19: {8} %e A326623 23: {9} %e A326623 25: {3,3} %e A326623 27: {2,2,2} %e A326623 29: {10} %e A326623 31: {11} %e A326623 32: {1,1,1,1,1} %e A326623 37: {12} %t A326623 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326623 Select[Range[100],IntegerQ[GeometricMean[primeMS[#]]]&] %Y A326623 The enumeration of these partitions by sum is given by A067539. %Y A326623 Heinz numbers of partitions with integer average are A316413. %Y A326623 The case without prime powers is A326624. %Y A326623 Subsets whose geometric mean is an integer are A326027. %Y A326623 Factorizations with integer geometric mean are A326028. %Y A326623 Cf. A001055, A078175, A102627, A326567/A326568, A326622, A326625. %K A326623 nonn %O A326623 1,1 %A A326623 _Gus Wiseman_, Jul 14 2019