This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326624 #5 Jul 15 2019 01:45:04 %S A326624 14,42,46,57,76,106,126,161,183,185,194,196,228,230,302,371,378,393, %T A326624 399,412,424,454,477,515,588,622,679,684,687,722,742,781,786,838,1057, %U A326624 1064,1077,1082,1115,1134,1150,1157,1159,1219,1244,1272,1322,1563,1589,1654 %N A326624 Heinz numbers of non-constant integer partitions whose geometric mean is an integer. %C A326624 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %H A326624 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A326624 The sequence of terms together with their prime indices begins: %e A326624 14: {1,4} %e A326624 42: {1,2,4} %e A326624 46: {1,9} %e A326624 57: {2,8} %e A326624 76: {1,1,8} %e A326624 106: {1,16} %e A326624 126: {1,2,2,4} %e A326624 161: {4,9} %e A326624 183: {2,18} %e A326624 185: {3,12} %e A326624 194: {1,25} %e A326624 196: {1,1,4,4} %e A326624 228: {1,1,2,8} %e A326624 230: {1,3,9} %e A326624 302: {1,36} %e A326624 371: {4,16} %e A326624 378: {1,2,2,2,4} %e A326624 393: {2,32} %e A326624 399: {2,4,8} %e A326624 412: {1,1,27} %t A326624 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326624 Select[Range[100],!PrimePowerQ[#]&&IntegerQ[GeometricMean[primeMS[#]]]&] %Y A326624 The case with prime powers is A326623. %Y A326624 Subsets whose geometric mean is an integer are A326027. %Y A326624 Cf. A001055, A067539, A078175, A102627, A316413, A326567/A326568, A326622, A326625. %K A326624 nonn %O A326624 1,1 %A A326624 _Gus Wiseman_, Jul 14 2019