A326625 Number of strict integer partitions of n whose geometric mean is an integer.
0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 2, 1, 2, 1, 2, 4, 3, 1, 2, 1, 4, 5, 2, 3, 3, 3, 5, 1, 3, 5, 5, 3, 4, 4, 7, 7, 5, 5, 2, 4, 2, 5, 7, 4, 6, 9, 5, 7, 7, 8, 7, 5, 11, 5, 9, 9, 9, 7, 9, 5, 13, 7, 9, 7, 11, 12, 7, 7, 12, 9, 13, 11, 10, 13, 7, 14
Offset: 0
Keywords
Examples
The a(63) = 9 partitions: (63) (36,18,9) (54,4,3,2) (36,18,6,2,1) (36,9,8,6,3,1) (48,12,3) (27,24,8,4) (18,16,12,9,8) (32,18,9,4) The initial terms count the following partitions: 1: (1) 2: (2) 3: (3) 4: (4) 5: (5) 5: (4,1) 6: (6) 7: (7) 7: (4,2,1) 8: (8) 9: (9) 10: (10) 10: (9,1) 10: (8,2) 11: (11) 12: (12) 13: (13) 13: (9,4) 13: (9,3,1) 14: (14) 14: (8,4,2) 15: (15) 15: (12,3) 16: (16)
Links
- Wikipedia, Geometric mean
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[GeometricMean[#]]&]],{n,0,30}]