This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326630 #18 Apr 15 2021 01:22:05 %S A326630 0,0,0,0,0,0,0,0,0,0,1,1,2,2,4,5,8,9,14,18,26,30,41,50,66,77,100,117, %T A326630 152,174,219,252,314,357,436,499,605,685,820,929,1109,1243,1469,1650, %U A326630 1947,2169,2536,2833,3297,3663,4235,4707,5424,6000,6867,7604,8684 %N A326630 Sum of the eighth largest parts in the partitions of n into 10 squarefree parts. %H A326630 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A326630 a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * p, where mu is the Möbius function (A008683). %F A326630 a(n) = A326627(n) - A326628(n) - A326629(n) - A326631(n) - A326632(n) - A326633(n) - A326634(n) - A326635(n) - A326636(n) - A326637(n). %t A326630 Table[Select[IntegerPartitions[n,{10}],AllTrue[#,SquareFreeQ]&][[All,8]]//Total,{n,0,60}] (* _Harvey P. Dale_, Apr 19 2020 *) %Y A326630 Cf. A008683, A005117, A326626, A326627, A326628, A326629, A326631, A326632, A326633, A326634, A326635, A326636, A326637. %K A326630 nonn %O A326630 0,13 %A A326630 _Wesley Ivan Hurt_, Jul 14 2019