cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326633 Sum of the fifth largest parts of the partitions of n into 10 squarefree parts.

This page as a plain text file.
%I A326633 #14 Sep 29 2021 18:43:32
%S A326633 0,0,0,0,0,0,0,0,0,0,1,1,2,2,4,6,10,12,18,24,36,42,58,71,97,114,149,
%T A326633 176,230,266,338,394,498,575,714,832,1028,1183,1439,1656,2011,2290,
%U A326633 2735,3115,3711,4195,4936,5574,6533,7335,8523,9549,11060,12334,14162
%N A326633 Sum of the fifth largest parts of the partitions of n into 10 squarefree parts.
%H A326633 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A326633 a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * l, where mu is the Möbius function (A008683).
%F A326633 a(n) = A326627(n) - A326628(n) - A326629(n) - A326630(n) - A326631(n) - A326632(n) - A326634(n) - A326635(n) - A326636(n) - A326637(n).
%t A326633 Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,SquareFreeQ]&][[All,5]]],{n,0,60}] (* _Harvey P. Dale_, Sep 29 2021 *)
%Y A326633 Cf. A008683, A326626, A326627, A326628, A326629, A326630, A326631, A326632, A326634, A326635, A326636, A326637.
%K A326633 nonn
%O A326633 0,13
%A A326633 _Wesley Ivan Hurt_, Jul 14 2019