This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326635 #10 Jul 14 2019 21:10:34 %S A326635 0,0,0,0,0,0,0,0,0,0,1,1,2,3,6,8,14,17,27,34,50,59,86,105,145,176,238, %T A326635 286,378,451,584,690,876,1022,1280,1487,1824,2104,2557,2932,3536,4030, %U A326635 4803,5463,6478,7327,8633,9751,11420,12854,14985,16822,19536,21874 %N A326635 Sum of the third largest parts of the partitions of n into 10 squarefree parts. %H A326635 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A326635 a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * j, where mu is the Möbius function (A008683). %F A326635 a(n) = A326627(n) - A326628(n) - A326629(n) - A326630(n) - A326631(n) - A326632(n) - A326633(n) - A326634(n) - A326636(n) - A326637(n). %t A326635 Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[j * MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}] %Y A326635 Cf. A008683, A326626, A326627, A326628, A326629, A326630, A326631, A326632, A326633, A326634, A326636, A326637. %K A326635 nonn %O A326635 0,13 %A A326635 _Wesley Ivan Hurt_, Jul 14 2019