This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326637 #10 Jul 14 2019 21:10:48 %S A326637 0,0,0,0,0,0,0,0,0,0,1,2,5,5,13,19,34,40,60,82,126,153,219,275,385, %T A326637 464,621,738,996,1168,1514,1780,2287,2643,3302,3839,4743,5456,6638, %U A326637 7605,9225,10479,12512,14199,16929,19061,22453,25300,29690,33283,38715,43333 %N A326637 Sum of the largest parts of the partitions of n into 10 squarefree parts. %H A326637 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A326637 a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} mu(r)^2 * mu(q)^2 * mu(p)^2 * mu(o)^2 * mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-j-k-l-m-o-p-q-r)^2 * (n-i-j-k-l-m-o-p-q-r), where mu is the Möbius function (A008683). %F A326637 a(n) = A326627(n) - A326628(n) - A326629(n) - A326630(n) - A326631(n) - A326632(n) - A326633(n) - A326634(n) - A326635(n) - A326636(n). %t A326637 Table[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[Sum[(n-i-j-k-l-m-o-p-q-r) * MoebiusMu[r]^2 * MoebiusMu[q]^2 * MoebiusMu[p]^2 * MoebiusMu[o]^2 * MoebiusMu[m]^2 * MoebiusMu[l]^2 * MoebiusMu[k]^2 * MoebiusMu[j]^2 * MoebiusMu[i]^2 * MoebiusMu[n - i - j - k - l - m - o - p - q - r]^2 , {i, j, Floor[(n - j - k - l - m - o - p - q - r)/2]}], {j, k, Floor[(n - k - l - m - o - p - q - r)/3]}], {k, l, Floor[(n - l - m - o - p - q - r)/4]}], {l, m, Floor[(n - m - o - p - q - r)/5]}], {m, o, Floor[(n - o - p - q - r)/6]}], {o, p, Floor[(n - p - q - r)/7]}], {p, q, Floor[(n - q - r)/8]}], {q, r, Floor[(n - r)/9]}], {r, Floor[n/10]}], {n, 0, 50}] %Y A326637 Cf. A008683, A326626, A326627, A326628, A326629, A326630, A326631, A326632, A326633, A326634, A326635, A326636. %K A326637 nonn %O A326637 0,12 %A A326637 _Wesley Ivan Hurt_, Jul 14 2019