This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326643 #12 Aug 03 2019 22:19:36 %S A326643 0,1,2,3,4,5,6,7,9,11,12,13,16,17,18,19,22,23,30,31,32,33,34,35,41,46, %T A326643 47,70,71,72,73,74,102,103,104,105,143,144,145,146,151,152,153,154, %U A326643 155,161,162,163,244,252,280,281,282,283,409,410,416,417,418,419 %N A326643 Number of subsets of {1..n} whose mean and geometric mean are both integers. %H A326643 David Wasserman, <a href="/A326643/b326643.txt">Table of n, a(n) for n = 0..119</a> %H A326643 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A326643 The a(1) = 1 through a(12) = 16 subsets: %e A326643 {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} %e A326643 {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} %e A326643 {3} {3} {3} {3} {3} {3} {3} {3} {3} {3} %e A326643 {4} {4} {4} {4} {4} {4} {4} {4} {4} %e A326643 {5} {5} {5} {5} {5} {5} {5} {5} %e A326643 {6} {6} {6} {6} {6} {6} {6} %e A326643 {7} {7} {7} {7} {7} {7} %e A326643 {8} {8} {8} {8} {8} %e A326643 {2,8} {9} {9} {9} {9} %e A326643 {1,9} {10} {10} {10} %e A326643 {2,8} {1,9} {11} {11} %e A326643 {2,8} {1,9} {12} %e A326643 {2,8} {1,9} %e A326643 {2,8} %e A326643 {3,6,12} %e A326643 {3,4,9,12} %t A326643 Table[Length[Select[Subsets[Range[n]],IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]],{n,0,10}] %Y A326643 Partial sums of A326644. %Y A326643 Subsets whose geometric mean is an integer are A326027. %Y A326643 Subsets whose mean is an integer are A051293. %Y A326643 Partitions with integer mean and geometric mean are A326641. %Y A326643 Strict partitions with integer mean and geometric mean are A326029. %Y A326643 Cf. A067538, A067539, A078175, A082553, A102627, A326623, A326625, A326645, A326646, A326647. %K A326643 nonn %O A326643 0,3 %A A326643 _Gus Wiseman_, Jul 16 2019 %E A326643 More terms from _David Wasserman_, Aug 03 2019