This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326645 #9 Jul 16 2019 22:02:16 %S A326645 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,46,47,49,53, %T A326645 57,59,61,64,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125,127, %U A326645 128,131,137,139,149,151,157,163,167,169,173,179,181,183,191,193 %N A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers. %C A326645 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326645 The enumeration of these partitions by sum is given by A326641. %H A326645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A326645 The sequence of terms together with their prime indices begins: %e A326645 2: {1} %e A326645 3: {2} %e A326645 4: {1,1} %e A326645 5: {3} %e A326645 7: {4} %e A326645 8: {1,1,1} %e A326645 9: {2,2} %e A326645 11: {5} %e A326645 13: {6} %e A326645 16: {1,1,1,1} %e A326645 17: {7} %e A326645 19: {8} %e A326645 23: {9} %e A326645 25: {3,3} %e A326645 27: {2,2,2} %e A326645 29: {10} %e A326645 31: {11} %e A326645 32: {1,1,1,1,1} %e A326645 37: {12} %e A326645 41: {13} %e A326645 43: {14} %e A326645 46: {1,9} %e A326645 47: {15} %e A326645 49: {4,4} %t A326645 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326645 Select[Range[100],IntegerQ[Mean[primeMS[#]]]&&IntegerQ[GeometricMean[primeMS[#]]]&] %Y A326645 Heinz numbers of partitions with integer mean are A316413. %Y A326645 Heinz numbers of partitions with integer geometric mean are A326623. %Y A326645 Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646. %Y A326645 Partitions with integer mean and geometric mean are A326641. %Y A326645 Subsets with integer mean and geometric mean are A326643. %Y A326645 Strict partitions with integer mean and geometric mean are A326029. %Y A326645 Cf. A051293, A056239, A067538, A067539, A078175, A112798, A316413, A326623, A326644, A326646, A326647. %K A326645 nonn %O A326645 1,1 %A A326645 _Gus Wiseman_, Jul 16 2019