cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers.

This page as a plain text file.
%I A326645 #9 Jul 16 2019 22:02:16
%S A326645 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,31,32,37,41,43,46,47,49,53,
%T A326645 57,59,61,64,67,71,73,79,81,83,89,97,101,103,107,109,113,121,125,127,
%U A326645 128,131,137,139,149,151,157,163,167,169,173,179,181,183,191,193
%N A326645 Heinz numbers of integer partitions whose mean and geometric mean are both integers.
%C A326645 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A326645 The enumeration of these partitions by sum is given by A326641.
%H A326645 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a>
%e A326645 The sequence of terms together with their prime indices begins:
%e A326645     2: {1}
%e A326645     3: {2}
%e A326645     4: {1,1}
%e A326645     5: {3}
%e A326645     7: {4}
%e A326645     8: {1,1,1}
%e A326645     9: {2,2}
%e A326645    11: {5}
%e A326645    13: {6}
%e A326645    16: {1,1,1,1}
%e A326645    17: {7}
%e A326645    19: {8}
%e A326645    23: {9}
%e A326645    25: {3,3}
%e A326645    27: {2,2,2}
%e A326645    29: {10}
%e A326645    31: {11}
%e A326645    32: {1,1,1,1,1}
%e A326645    37: {12}
%e A326645    41: {13}
%e A326645    43: {14}
%e A326645    46: {1,9}
%e A326645    47: {15}
%e A326645    49: {4,4}
%t A326645 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326645 Select[Range[100],IntegerQ[Mean[primeMS[#]]]&&IntegerQ[GeometricMean[primeMS[#]]]&]
%Y A326645 Heinz numbers of partitions with integer mean are A316413.
%Y A326645 Heinz numbers of partitions with integer geometric mean are A326623.
%Y A326645 Heinz numbers of non-constant partitions with integer mean and geometric mean are A326646.
%Y A326645 Partitions with integer mean and geometric mean are A326641.
%Y A326645 Subsets with integer mean and geometric mean are A326643.
%Y A326645 Strict partitions with integer mean and geometric mean are A326029.
%Y A326645 Cf. A051293, A056239, A067538, A067539, A078175, A112798, A316413, A326623, A326644, A326646, A326647.
%K A326645 nonn
%O A326645 1,1
%A A326645 _Gus Wiseman_, Jul 16 2019