This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326659 #40 Feb 09 2021 09:39:58 %S A326659 1,1,1,1,4,2,1,15,18,6,1,64,132,96,24,1,325,980,1140,600,120,1,1956, %T A326659 7830,12720,10440,4320,720,1,13699,68502,143850,162120,103320,35280, %U A326659 5040,1,109600,657608,1698816,2447760,2123520,1108800,322560,40320 %N A326659 T(n,k) = [0<k<=n] * n*(T(n-1,k-1)+T(n-1,k)) + [k=0 and n>=0]; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows. %C A326659 [] is an Iverson bracket. %H A326659 Alois P. Heinz, <a href="/A326659/b326659.txt">Rows n = 0..140, flattened</a> %H A326659 Wikipedia, <a href="https://en.wikipedia.org/wiki/Iverson_bracket">Iverson bracket</a> %F A326659 E.g.f. of column k: exp(x)*(x/(1-x))^k. %F A326659 T(n,k) = k! * A271705(n,k). %F A326659 T(n,k) = n * A073474(n-1,k-1) for n,k >= 1. %F A326659 T(n,1) = n * A000522(n-1) for n >= 1. %F A326659 T(n,2) = n * A093964(n-1) for n >= 1. %F A326659 Sum_{k=1..n} k * T(n,k) = A327606(n). %e A326659 Triangle T(n,k) begins: %e A326659 1; %e A326659 1, 1; %e A326659 1, 4, 2; %e A326659 1, 15, 18, 6; %e A326659 1, 64, 132, 96, 24; %e A326659 1, 325, 980, 1140, 600, 120; %e A326659 1, 1956, 7830, 12720, 10440, 4320, 720; %e A326659 1, 13699, 68502, 143850, 162120, 103320, 35280, 5040; %e A326659 ... %p A326659 T:= proc(n, k) option remember; %p A326659 `if`(0<k and k<=n, n*(T(n-1, k-1)+T(n-1, k)), 0)+ %p A326659 `if`(k=0 and n>=0, 1, 0) %p A326659 end: %p A326659 seq(seq(T(n, k), k=0..n), n=0..10); %t A326659 T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = Boole[0 < k <= n]*n*(T[n-1, k-1] + T[n-1, k]) + Boole[k == 0 && n >= 0]; %t A326659 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 09 2021 *) %Y A326659 Columns k=0-2 give: A000012, A007526, 2*A134432(n-1). %Y A326659 Main diagonal gives A000142. %Y A326659 Row sums give A308876. %Y A326659 Cf. A000522, A073474, A093964, A143409, A196347, A271705, A327606. %K A326659 nonn,tabl %O A326659 0,5 %A A326659 _Alois P. Heinz_, Sep 12 2019