A326662 Rectangular array in 3 columns that solve the complementary equation c(n) = a(2n) + b(2n), where a(1) = 1; see Comments.
1, 2, 7, 3, 4, 17, 5, 6, 25, 8, 9, 34, 10, 11, 43, 12, 13, 53, 14, 15, 61, 16, 18, 71, 19, 20, 79, 21, 22, 89, 23, 24, 97, 26, 27, 106, 28, 29, 115, 30, 31, 125, 32, 33, 133, 35, 36, 142, 37, 38, 151, 39, 40, 161, 41, 42, 169, 44, 45, 178, 46, 47, 187, 48
Offset: 1
Examples
c(1) = a(2) + b(2) >= 3 + 4, so that b(1) = mex{1} = 2; a(2) = mex{1,2} = 3; b(2) = mex{1,2,3} = 4; a(3)= mex{1,2,3,4} = 5, a(4) = mex{1,2,3,4,5} = 6, c(1) = 7. n a(n) b(n) c(n) ----------------------------------- 1 1 2 7 2 3 4 17 3 5 6 25 4 8 9 34 5 10 11 43 6 12 13 53 7 14 15 61 8 16 18 71 9 19 20 79 10 21 22 89
Programs
-
Mathematica
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); a = b = c = {}; h = 2; k = 2; Do[Do[AppendTo[a, mex[Flatten[{a, b, c}], Max[Last[a /. {} -> {0}], 1]]]; AppendTo[b, mex[Flatten[{a, b, c}], Max[Last[b /. {} -> {0}], 1]]], {k}]; AppendTo[c, a[[h Length[a]/k]] + Last[b]], {150}]; {a, b, c} // ColumnForm a = Take[a, Length[c]]; b = Take[b, Length[c]]; Flatten[Transpose[{a, b, c}]](* Peter J. C. Moses, Jul 04 2019 *)
Extensions
Replaced a(0)->a(1) in NAME. - R. J. Mathar, Jun 19 2021
Comments