This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326666 #13 Jul 02 2021 01:53:59 %S A326666 36,64,100,144,196,216,256,324,400,484,512,576,676,784,900,1000,1024, %T A326666 1156,1296,1444,1600,1728,1764,1936,2116,2304,2500,2704,2744,2916, %U A326666 3136,3364,3375,3600,3844,4096,4356,4624,4900,5184,5476,5776,5832,6084,6400,6724 %N A326666 Numbers k such that there exists a factorization of k into factors > 1 whose mean is not an integer but whose geometric mean is an integer. %H A326666 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %e A326666 36 has two such factorizations: (3*12) and (4*9). %e A326666 The sequence of terms together with their prime indices begins: %e A326666 36: {1,1,2,2} %e A326666 64: {1,1,1,1,1,1} %e A326666 100: {1,1,3,3} %e A326666 144: {1,1,1,1,2,2} %e A326666 196: {1,1,4,4} %e A326666 216: {1,1,1,2,2,2} %e A326666 256: {1,1,1,1,1,1,1,1} %e A326666 324: {1,1,2,2,2,2} %e A326666 400: {1,1,1,1,3,3} %e A326666 484: {1,1,5,5} %e A326666 512: {1,1,1,1,1,1,1,1,1} %e A326666 576: {1,1,1,1,1,1,2,2} %e A326666 676: {1,1,6,6} %e A326666 784: {1,1,1,1,4,4} %e A326666 900: {1,1,2,2,3,3} %e A326666 1000: {1,1,1,3,3,3} %e A326666 1024: {1,1,1,1,1,1,1,1,1,1} %e A326666 1156: {1,1,7,7} %e A326666 1296: {1,1,1,1,2,2,2,2} %e A326666 1444: {1,1,8,8} %t A326666 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A326666 Select[Range[1000],Length[Select[facs[#],!IntegerQ[Mean[#]]&&IntegerQ[GeometricMean[#]]&]]>1&] %Y A326666 A subsequence of A001597. %Y A326666 Factorizations with integer mean are A326622. %Y A326666 Factorizations with integer geometric mean are A326028. %Y A326666 Cf. A001055, A067538, A067539, A326027, A326516, A326623, A326641, A326643, A326645, A326647. %K A326666 nonn %O A326666 1,1 %A A326666 _Gus Wiseman_, Jul 17 2019