This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326667 #5 Jul 18 2019 06:18:34 %S A326667 1,2,3,4,5,7,8,11,15,19,21,29,37,44,58,67,86,105,136,146,219,236,295, %T A326667 327,473,469,694,707,932,1020,1398,1340,2023,2059,2636,2816,3887,3855, %U A326667 5377,5467,7095,7611,9924,9992,13795,14205,17728,19315,24803,25452,33026 %N A326667 Number of factorizations of 2^n into factors > 1 with integer average. %C A326667 Also the number of integer partitions y of n such that the average of the multiset {2^s: s in y} is an integer. %e A326667 The a(1) = 1 through a(8) = 11 partitions: %e A326667 (1) (2) (3) (4) (5) (6) (7) (8) %e A326667 (11) (21) (22) (32) (33) (43) (44) %e A326667 (111) (31) (41) (42) (52) (53) %e A326667 (1111) (311) (51) (61) (62) %e A326667 (11111) (222) (331) (71) %e A326667 (2211) (511) (422) %e A326667 (111111) (3211) (2222) %e A326667 (1111111) (3311) %e A326667 (4211) %e A326667 (311111) %e A326667 (11111111) %t A326667 Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[2^#]]&]],{n,30}] %Y A326667 The strict case is A326668. %Y A326667 Factorizations with integer average are A326622. %Y A326667 Partitions with integer average are A067538. %Y A326667 Subsets with integer average are A051293. %Y A326667 Cf. A001055, A102627, A326028, A326647, A326666, A326670, A326671. %K A326667 nonn %O A326667 1,2 %A A326667 _Gus Wiseman_, Jul 17 2019