cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326667 Number of factorizations of 2^n into factors > 1 with integer average.

This page as a plain text file.
%I A326667 #5 Jul 18 2019 06:18:34
%S A326667 1,2,3,4,5,7,8,11,15,19,21,29,37,44,58,67,86,105,136,146,219,236,295,
%T A326667 327,473,469,694,707,932,1020,1398,1340,2023,2059,2636,2816,3887,3855,
%U A326667 5377,5467,7095,7611,9924,9992,13795,14205,17728,19315,24803,25452,33026
%N A326667 Number of factorizations of 2^n into factors > 1 with integer average.
%C A326667 Also the number of integer partitions y of n such that the average of the multiset {2^s: s in y} is an integer.
%e A326667 The a(1) = 1 through a(8) = 11 partitions:
%e A326667   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A326667        (11)  (21)   (22)    (32)     (33)      (43)       (44)
%e A326667              (111)  (31)    (41)     (42)      (52)       (53)
%e A326667                     (1111)  (311)    (51)      (61)       (62)
%e A326667                             (11111)  (222)     (331)      (71)
%e A326667                                      (2211)    (511)      (422)
%e A326667                                      (111111)  (3211)     (2222)
%e A326667                                                (1111111)  (3311)
%e A326667                                                           (4211)
%e A326667                                                           (311111)
%e A326667                                                           (11111111)
%t A326667 Table[Length[Select[IntegerPartitions[n],IntegerQ[Mean[2^#]]&]],{n,30}]
%Y A326667 The strict case is A326668.
%Y A326667 Factorizations with integer average are A326622.
%Y A326667 Partitions with integer average are A067538.
%Y A326667 Subsets with integer average are A051293.
%Y A326667 Cf. A001055, A102627, A326028, A326647, A326666, A326670, A326671.
%K A326667 nonn
%O A326667 1,2
%A A326667 _Gus Wiseman_, Jul 17 2019