cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326674 GCD of the set of positions of 1's in the reversed binary expansion of n.

This page as a plain text file.
%I A326674 #16 Nov 15 2022 15:06:35
%S A326674 1,2,1,3,1,1,1,4,1,2,1,1,1,1,1,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,6,1,2,
%T A326674 1,3,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,7,1,1,1,1,
%U A326674 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A326674 GCD of the set of positions of 1's in the reversed binary expansion of n.
%C A326674 a(n) is even if and only if n is in A062880. - _Robert Israel_, Oct 13 2020
%H A326674 Robert Israel, <a href="/A326674/b326674.txt">Table of n, a(n) for n = 1..10000</a>
%F A326674 Trivially, a(n) <= log_2(n). - _Charles R Greathouse IV_, Nov 15 2022
%e A326674 The reversed binary expansion of 40 is (0,0,0,1,0,1), with positions of 1's being {4,6}, so a(40) = GCD(4,6) = 2.
%p A326674 f:= proc(n) local B;
%p A326674   B:= convert(n,base,2);
%p A326674   igcd(op(select(t -> B[t]=1, [$1..ilog2(n)+1])))
%p A326674 end proc:
%p A326674 map(f, [$1..100]); # _Robert Israel_, Oct 13 2020
%t A326674 Table[GCD@@Join@@Position[Reverse[IntegerDigits[n,2]],1],{n,100}]
%Y A326674 Positions of 1's are A291166, and non-1's are A291165.
%Y A326674 GCDs of prime indices are A289508.
%Y A326674 GCDs of strict partitions encoded by FDH numbers are A319826.
%Y A326674 Numbers whose binary positions are pairwise coprime are A326675.
%Y A326674 Cf. A000120, A051293, A062880, A070939, A326667, A326668, A326669, A326670, A326672, A326673.
%K A326674 nonn,base
%O A326674 1,2
%A A326674 _Gus Wiseman_, Jul 17 2019