cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326679 Sum of the smallest parts of the partitions of n into 10 primes.

This page as a plain text file.
%I A326679 #11 Jan 20 2022 18:38:47
%S A326679 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,4,4,6,8,8,10,14,17,18,
%T A326679 23,22,30,32,38,40,54,48,67,66,83,78,105,94,131,118,154,138,198,160,
%U A326679 231,196,271,228,329,262,392,308,446,358,536,400,620,472
%N A326679 Sum of the smallest parts of the partitions of n into 10 primes.
%H A326679 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A326679 a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} c(r) * c(q) * c(p) * c(o) * c(m) * c(l) * c(k) * c(j) * c(i) * c(n-i-j-k-l-m-o-p-q-r) * r, where c = A010051.
%F A326679 a(n) = A326678(n) - A326680(n) - A326681(n) - A326682(n) - A326683(n) - A326684(n) - A326685(n) - A326686(n) - A326687(n) - A326688(n).
%t A326679 Table[Total[Select[IntegerPartitions[n,{10}],AllTrue[#,PrimeQ]&][[All,-1]]],{n,0,70}] (* _Harvey P. Dale_, Jan 20 2022 *)
%Y A326679 Cf. A010051, A259201, A326678, A326680, A326681, A326682, A326683, A326684, A326685, A326686, A326687, A326688.
%K A326679 nonn
%O A326679 0,21
%A A326679 _Wesley Ivan Hurt_, Jul 17 2019