This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326701 #10 May 24 2024 16:18:59 %S A326701 0,1,2,3,4,8,9,10,11,12,16,18,32,33,64,128,129,130,131,132,136,137, %T A326701 138,139,140,144,146,160,161,192,256,258,264,266,288,512,513,520,521, %U A326701 528,1024,1032,2048,2049,2050,2051,2052,4096,4098,8192,8193,16384,32768,32769 %N A326701 BII-numbers of set partitions. %C A326701 A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, and {{2},{1,3}} is a set partition, it follows that 18 belongs to the sequence. %H A326701 John Tyler Rascoe, <a href="/A326701/b326701.txt">Table of n, a(n) for n = 1..10000</a> %e A326701 The sequence of all set partitions together with their BII numbers begins: %e A326701 0: {} %e A326701 1: {{1}} %e A326701 2: {{2}} %e A326701 3: {{1},{2}} %e A326701 4: {{1,2}} %e A326701 8: {{3}} %e A326701 9: {{1},{3}} %e A326701 10: {{2},{3}} %e A326701 11: {{1},{2},{3}} %e A326701 12: {{1,2},{3}} %e A326701 16: {{1,3}} %e A326701 18: {{2},{1,3}} %e A326701 32: {{2,3}} %e A326701 33: {{1},{2,3}} %e A326701 64: {{1,2,3}} %e A326701 128: {{4}} %e A326701 129: {{1},{4}} %e A326701 130: {{2},{4}} %e A326701 131: {{1},{2},{4}} %e A326701 132: {{1,2},{4}} %e A326701 136: {{3},{4}} %t A326701 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326701 Select[Range[0,1000],UnsameQ@@Join@@bpe/@bpe[#]&] %o A326701 (Python) %o A326701 from itertools import chain, count, combinations, islice %o A326701 from sympy.utilities.iterables import multiset_partitions %o A326701 def a_gen(): %o A326701 yield 0 %o A326701 for n in count(1): %o A326701 t = [] %o A326701 for i in chain.from_iterable(combinations(range(1,n+1),r) for r in range(n+1)): %o A326701 if n in i: %o A326701 for j in multiset_partitions(i): %o A326701 t.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j)) %o A326701 yield from sorted(t) %o A326701 A326701_list = list(islice(a_gen(), 100)) # _John Tyler Rascoe_, May 24 2024 %Y A326701 MM-numbers of set partitions are A302521. %Y A326701 BII-numbers of chains of nonempty sets are A326703. %Y A326701 BII-numbers of antichains of nonempty sets are A326704. %Y A326701 Cf. A000120, A029931, A035327, A048793, A070939, A291166, A326031, A326675, A326702. %K A326701 nonn,base %O A326701 1,3 %A A326701 _Gus Wiseman_, Jul 21 2019