This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326703 #21 Jun 08 2024 01:47:56 %S A326703 0,1,2,4,5,6,8,16,17,24,32,34,40,64,65,66,68,69,70,72,80,81,88,96,98, %T A326703 104,128,256,257,384,512,514,640,1024,1025,1026,1028,1029,1030,1152, %U A326703 1280,1281,1408,1536,1538,1664,2048,2056,2176,4096,4097,4104,4112,4113,4120 %N A326703 BII-numbers of chains of nonempty sets. %C A326703 A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, it follows that the BII-number of {{2},{1,3}} is 18. %C A326703 Elements of a set-system are sometimes called edges. In a chain of sets, every edge is a subset or superset of every other edge. %H A326703 John Tyler Rascoe, <a href="/A326703/b326703.txt">Table of n, a(n) for n = 1..4860</a> %e A326703 The sequence of all chains of nonempty sets together with their BII-numbers begins: %e A326703 0: {} %e A326703 1: {{1}} %e A326703 2: {{2}} %e A326703 4: {{1,2}} %e A326703 5: {{1},{1,2}} %e A326703 6: {{2},{1,2}} %e A326703 8: {{3}} %e A326703 16: {{1,3}} %e A326703 17: {{1},{1,3}} %e A326703 24: {{3},{1,3}} %e A326703 32: {{2,3}} %e A326703 34: {{2},{2,3}} %e A326703 40: {{3},{2,3}} %e A326703 64: {{1,2,3}} %e A326703 65: {{1},{1,2,3}} %e A326703 66: {{2},{1,2,3}} %e A326703 68: {{1,2},{1,2,3}} %e A326703 69: {{1},{1,2},{1,2,3}} %e A326703 70: {{2},{1,2},{1,2,3}} %e A326703 72: {{3},{1,2,3}} %e A326703 80: {{1,3},{1,2,3}} %e A326703 81: {{1},{1,3},{1,2,3}} %e A326703 88: {{3},{1,3},{1,2,3}} %e A326703 96: {{2,3},{1,2,3}} %e A326703 98: {{2},{2,3},{1,2,3}} %t A326703 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326703 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326703 Select[Range[0,100],stableQ[bpe/@bpe[#],!SubsetQ[#1,#2]&&!SubsetQ[#2,#1]&]&] %o A326703 (Python) %o A326703 from itertools import chain, count, combinations, islice %o A326703 from sympy.combinatorics.subsets import ksubsets %o A326703 def subsets(x): %o A326703 for i in range(1,len(x)): %o A326703 for j in ksubsets(x,i): %o A326703 yield(list(j)) %o A326703 def a_gen(): #generator of terms %o A326703 yield 0 %o A326703 for n in count(1): %o A326703 t,v,j = [[]],[],0 %o A326703 for i in chain.from_iterable(combinations(range(1, n+1), r) for r in range(n+1)): %o A326703 if n in i: %o A326703 t[j].append([list(i)]) %o A326703 while n: %o A326703 t.append([]) %o A326703 for i in t[j]: %o A326703 if len(i[-1]) > 1: %o A326703 for k in list(subsets(i[-1])): %o A326703 t[j+1].append(i.copy()+[k]) %o A326703 if len(t[j+1]) < 1: %o A326703 break %o A326703 j += 1 %o A326703 for j in chain.from_iterable(t): %o A326703 v.append(sum(2**(sum(2**(m-1) for m in k)-1) for k in j)) %o A326703 yield from sorted(v) %o A326703 A326703_list = list(islice(a_gen(), 55)) # _John Tyler Rascoe_, Jun 07 2024 %Y A326703 Chains of nonempty sets are counted by A000629. %Y A326703 MM-numbers of chains of multisets are A318991. %Y A326703 BII-numbers of antichains of nonempty sets are A326704. %Y A326703 Cf. A000120, A014466, A029931, A035327, A048793, A070939, A326031, A326701, A326702. %K A326703 nonn,base %O A326703 1,3 %A A326703 _Gus Wiseman_, Jul 21 2019