cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326705 Non-oblong numbers that are repdigits with length > 2 in more than three bases.

Original entry on oeis.org

4095, 262143, 265720, 531440, 1048575, 5592405, 11184810, 16777215, 122070312, 183105468, 193710244, 244140624, 268435455, 387420488, 435356467
Offset: 1

Views

Author

Bernard Schott, Jul 21 2019

Keywords

Comments

The number of Brazilian representations of a non-oblong number m with repdigits of length = 2 is beta'(m) = tau(m)/2 - 1. So, as here beta"(m) = r with r >= 4, beta(m) = tau(m)/2 + k with k >= 3 where beta(m) is the number of Brazilian representations of m.
As tau(m) = 2 * (beta(m) - k) is even, the terms of this sequence are not squares.
The terms which have exactly four Brazilian representations with three digits or more form the first subsequence of A326383. Indeed, for the given terms, the number of bases is 4, except for a(8) and a(15) where this number of bases is respectively 5 and 6 (see examples).
Some Mersenne numbers belong to this sequence: M_12 = a(1), M_18 = a(2), M_20 = a(5), M_24 = a(8), M_28 = a(13), M_32, ...

Examples

			If beta"(m)is the number of Brazilian representations with three digits or more of the integer m, then:
1) With beta"(m) = 4; tau(4095) = 24 and 4095 has exactly four Brazilian representations with three digits or more: [R(12)]_2 = 333333_4 = 7777_4 = (15,15,15)_16 and 11 representations with 2 digits, so beta(4095) = 15 and k = 3.
2) With beta"(m) = 5; tau(435356467) = 64 and 435356467 has exactly five Brazilian representations with three digits or more: R(12)_6 = 777777_36 = (43,43,43)_216 = (259,259,259)_1296 = (31,31,31)_3747 and has 31 representations with 2 digits, so beta(435356467) = 36 and k = 4.
3) With beta"(m)=6; tau(16777215)= 96 and 16777215 has exactly six Brazilian representations with three digits or more: [R(24)]_2 = 333333333333_4 = 7777777_8 = (15,15,15,15,15,15)_16 = (63,63,63,63)_64 = (255,255,255)_256 and 47 representations with 2 digits, so beta(16777215) = 53 and k = 5.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783, A290869 and A308874.
Cf. A326386 (non-oblongs with tau(m)/2 - 1), A326387 (non-oblongs with tau(m)/2), A326388 (non-oblongs with tau(m)/2 + 1), A326389 (non-oblongs with tau(m)/2 + 2), this sequence (non-oblongs with tau(m/2) + k, k >= 3).