A326707 Squares m such that beta(m) = (tau(m) - 3)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
4, 9, 16, 25, 36, 49, 64, 81, 100, 144, 169, 196, 225, 256, 289, 324, 361, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2500, 2601, 2704, 2809, 2916, 3025, 3136
Offset: 1
Examples
One example for each type: 25 = 5^2, tau(25) = 3 and beta(25) = 0 because 25 is not Brazilian. 196 = 14^2 = 77_27 = 44_48 = 22_97, so beta(196) = 3 with tau(196) = 9 and (9-3)/2 = 3.
Links
- Bernard Schott, Abstract - Relations beta = f(tau)
- Bernard Schott, Array - Relations beta = f(tau) for squares
- Index entries for sequences related to Brazilian numbers
Crossrefs
Programs
-
Mathematica
brazQ[n_, b_] := Length@Union@IntegerDigits[n, b] == 1; beta[n_] := Sum[Boole @ brazQ[n, b], {b, 2, n - 2}]; aQ[n_] := beta[n] == (DivisorSigma[0, n] - 3)/2; Select[Range[56]^2, aQ] (* Amiram Eldar, Sep 06 2019 *)
Comments