A326710 Squares m such that beta(m) = (tau(m) - 1)/2 where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.
1, 121, 400, 1521, 1600, 2401, 6084, 17689, 61009, 244036, 294849, 1179396, 1483524, 2653641, 2725801, 2989441, 4717584, 5239521, 7371225, 9591409, 10614564, 11957764, 14447601, 17397241, 18870336, 20277009, 20958084, 23882769, 26904969, 29484900, 38365636, 38825361, 47155689
Offset: 1
Examples
One example for each type: 1) 1 is not Brazilian, tau(1) = 1 and beta(1) = (tau(1) - 1)/2 = 0. 2) 121 = 11^2 = 11111_3, tau(121) = 3 and beta(121) = (tau(121) - 1)/2 = 1. 3) 1521 = 39^2 = 333_22 = (13,13)_116 = 99_168 = 33_506. The divisors of 1521 are {1, 3, 9, 13, 39, 117, 169, 507, 1521} so tau(1521) = 9 and beta(1521) = (tau(1521) - 1)/2 = 4.
Links
Programs
-
Mathematica
brazQ[n_, b_] := Length@Union@IntegerDigits[n, b] == 1; beta[n_] := Sum[Boole @ brazQ[n, b], {b, 2, n - 2}]; aQ[n_] := beta[n] == (DivisorSigma[0, n] - 1)/2; Select[Range[6867]^2, aQ] (* Amiram Eldar, Sep 14 2019 *)
Formula
a(n+1) = (A158235(n))^2 for n >= 1.
Comments