This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326716 #37 Aug 13 2019 16:34:54 %S A326716 5,11,17,461,617,773,401,599,797,877,1087,1297,1471,1597,1723,1217, %T A326716 1847,2477,3001,3259,3517,3001,3637,4273,2417,3407,4397,2081,3299, %U A326716 4517,4339,4549,4759,3733,4801,5869,7193,8117,9041,11927,12203,12479,13103,13217,13331 %N A326716 3-term arithmetic progressions of primes whose indices are also primes in arithmetic progression. %C A326716 3-term arithmetic progressions are ordered first by highest term, then by middle term, and last by lowest term. %C A326716 Is there a proof that the sequence is infinite? %H A326716 Alois P. Heinz, <a href="/A326716/b326716.txt">Table of n, a(n) for n = 1..10293</a> %H A326716 <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a> %F A326716 a(3*k+2) - a(3*k+1) = a(3*k+3) - a(3*k+2) for k >= 0. %F A326716 pi(a(3*k+2)) - pi(a(3*k+1)) = pi(a(3*k+3)) - pi(a(3*k+2)) for k >= 0. %F A326716 a(n) = prime(pi(a(n))) = A000040(A000720(a(n))). %F A326716 pi(a(n)) = prime(pi(pi(a(n)))). %e A326716 The indices of 5,11,17 form the arithmetic progression of primes 3,5,7. %e A326716 The indices of 461,617,773 form the arithmetic progression of primes 89,113,137. %p A326716 l:= NULL: nn:= 2000: # nn = upper limit for index of largest prime found %p A326716 for n from 3 to nn do %p A326716 if isprime(n) then %p A326716 for i from iquo(n-1, 2) to 1 by -1 do %p A326716 if isprime(n-i) and isprime(n-2*i) then %p A326716 p, q, r:= map(ithprime, [seq(n-i*j, j=0..2)])[]; %p A326716 if p-q = q-r then l:= l, r, q, p %p A326716 fi fi od fi od: l; # _Alois P. Heinz_, Aug 12 2019 %Y A326716 Cf. A000040, A000720, A006450, A231406. %K A326716 nonn,look %O A326716 1,1 %A A326716 _Jonathan Sondow_, Aug 11 2019 %E A326716 More terms from _Alois P. Heinz_, Aug 12 2019