This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326728 #14 Oct 30 2024 21:08:37 %S A326728 0,0,-1,0,-1,-2,0,-1,-1,-3,0,-1,0,0,-4,0,-1,1,3,2,-5,0,-1,2,6,8,5,-6, %T A326728 0,-1,3,9,14,15,9,-7,0,-1,4,12,20,25,24,14,-8,0,-1,5,15,26,35,39,35, %U A326728 20,-9,0,-1,6,18,32,45,54,56,48,27,-10 %N A326728 A(n, k) = n*(k - 1)*k/2 - k, square array for n >= 0 and k >= 0 read by ascending antidiagonals. %C A326728 A formal extension of the figurative numbers A139600 to negative n. %H A326728 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/FigurateNumber">Figurate number — a very short introduction</a>. With plots from Stefan Friedrich Birkner. %e A326728 [0] 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, ... A001489 %e A326728 [1] 0, -1, -1, 0, 2, 5, 9, 14, 20, 27, 35, ... A080956 %e A326728 [2] 0, -1, 0, 3, 8, 15, 24, 35, 48, 63, 80, ... A067998 %e A326728 [3] 0, -1, 1, 6, 14, 25, 39, 56, 76, 99, 125, ... A095794 %e A326728 [4] 0, -1, 2, 9, 20, 35, 54, 77, 104, 135, 170, ... A014107 %e A326728 [5] 0, -1, 3, 12, 26, 45, 69, 98, 132, 171, 215, ... A326725 %e A326728 [6] 0, -1, 4, 15, 32, 55, 84, 119, 160, 207, 260, ... A270710 %e A326728 [7] 0, -1, 5, 18, 38, 65, 99, 140, 188, 243, 305, ... %p A326728 A := (n, k) -> n*(k - 1)*k/2 - k: %p A326728 seq(seq(A(n - k, k), k=0..n), n=0..11); %o A326728 (Python) %o A326728 def A326728Row(n): %o A326728 x, y = 1, 1 %o A326728 yield 0 %o A326728 while True: %o A326728 yield -x %o A326728 x, y = x + y - n, y - n %o A326728 for n in range(8): %o A326728 R = A326728Row(n) %o A326728 print([next(R) for _ in range(11)]) %Y A326728 Cf. A001489 (n=0), A080956 (n=1), A067998 (n=2), A095794 (n=3), A014107 (n=4), A326725 (n=5), A270710 (n=6). %Y A326728 Columns include A008585, A016933, A017329. %Y A326728 Cf. A139600. %K A326728 sign,tabl,easy %O A326728 0,6 %A A326728 _Peter Luschny_, Aug 04 2019