This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326743 #12 Oct 18 2024 11:43:13 %S A326743 1,12,48,288,1344,6828,32892,159612,766356,3671076,17521560,83440932, %T A326743 396541656,1881162084,8909612856,42136382208,199020641232, %U A326743 938971412124,4425660916764 %N A326743 Number of length n self-avoiding walks on the kisrhombille tiling starting at a degree 12 vertex. %C A326743 The kisrhombille tiling, Dual(4.6.12), is the dual of the truncated trihexagonal tiling. %H A326743 Sven Erick Alm, <a href="https://doi.org/10.1088/0305-4470/38/10/001">Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices</a>, J. Phys. A.: Math. Gen., 38 (2005), 2055-2080. Also <a href="https://citeseerx.ist.psu.edu/document?doi=17863725272f56f85b6ace259e9b8724f7db96b3">technical report</a> of the same name, 2004. See Table 12, column f_1(n). %H A326743 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a326/A326743.java">Java program</a> (github) %H A326743 Wikipedia, <a href="https://en.wikipedia.org/wiki/Truncated_trihexagonal_tiling#Kisrhombille_tiling">Kisrhombille tiling</a> %Y A326743 Cf. A326744 (degree 6 vertex), A326745 (degree 4 vertex), A249795 (dual), A298036 (coordination sequence). %K A326743 nonn,walk,more %O A326743 0,2 %A A326743 _Sean A. Irvine_, Jul 23 2019 %E A326743 a(18) from Alm (2005) added by _Andrey Zabolotskiy_, Oct 18 2024