This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326750 #13 Jul 15 2024 15:36:30 %S A326750 0,1,2,4,8,16,20,32,36,48,52,64,128,256,260,272,276,292,304,308,320, %T A326750 512,516,532,544,548,560,564,576,768,772,784,788,800,804,816,820,832, %U A326750 1024,1040,1056,1072,1088,2048,2064,2068,2080,2084,2096,2100,2112,2304 %N A326750 BII-numbers of clutters (connected antichains of nonempty sets). %C A326750 A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. %C A326750 Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. %H A326750 John Tyler Rascoe, <a href="/A326750/b326750.txt">Table of n, a(n) for n = 1..6834</a> %H A326750 John Tyler Rascoe, <a href="/A326750/a326750.py.txt">Python program</a>. %F A326750 Intersection of A326749 and A326704. %e A326750 The sequence of all clutters together with their BII-numbers begins: %e A326750 0: {} %e A326750 1: {{1}} %e A326750 2: {{2}} %e A326750 4: {{1,2}} %e A326750 8: {{3}} %e A326750 16: {{1,3}} %e A326750 20: {{1,2},{1,3}} %e A326750 32: {{2,3}} %e A326750 36: {{1,2},{2,3}} %e A326750 48: {{1,3},{2,3}} %e A326750 52: {{1,2},{1,3},{2,3}} %e A326750 64: {{1,2,3}} %e A326750 128: {{4}} %e A326750 256: {{1,4}} %e A326750 260: {{1,2},{1,4}} %e A326750 272: {{1,3},{1,4}} %e A326750 276: {{1,2},{1,3},{1,4}} %e A326750 292: {{1,2},{2,3},{1,4}} %e A326750 304: {{1,3},{2,3},{1,4}} %e A326750 308: {{1,2},{1,3},{2,3},{1,4}} %e A326750 320: {{1,2,3},{1,4}} %t A326750 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326750 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326750 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326750 Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&] %o A326750 (Python) # see linked program %Y A326750 The number of clutters spanning n vertices is A048143(n). %Y A326750 Cf. A000120, A001187, A048793, A070939, A072639, A304986, A326031, A326702, A326753. %Y A326750 Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326751 (blobs), A326752 (hypertrees), A326754 (covers). %K A326750 nonn,base %O A326750 1,3 %A A326750 _Gus Wiseman_, Jul 23 2019