This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326751 #10 Jul 27 2019 14:57:51 %S A326751 0,1,2,4,8,16,32,52,64,128,256,512,772,816,820,832,1024,1072,1088, %T A326751 2048,2320,2340,2356,2368,2580,2592,2612,2624,2836,2852,2864,2868, %U A326751 2880,3088,3104,3120,3136,4096,4132,4160,4612,4640,4644,4672,5120,5152,5184,8192 %N A326751 BII-numbers of blobs. %C A326751 A binary index of n is any position of a 1 in its reversed binary expansion. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. %C A326751 Elements of a set-system are sometimes called edges. In an antichain, no edge is a subset or superset of any other edge. In a 2-vertex-connected set-system, at least two vertices must be removed to make the set-system disconnected. A blob is a connected, 2-vertex-connected antichain of finite, nonempty sets, or, equivalently, a 2-vertex-connected clutter. %H A326751 Gus Wiseman, <a href="http://www.mathematica-journal.com/2017/12/every-clutter-is-a-tree-of-blobs/">Every Clutter Is a Tree of Blobs</a>, The Mathematica Journal, Vol. 19, 2017. %e A326751 The sequence of all blobs together with their BII-numbers begins: %e A326751 0: {} %e A326751 1: {{1}} %e A326751 2: {{2}} %e A326751 4: {{1,2}} %e A326751 8: {{3}} %e A326751 16: {{1,3}} %e A326751 32: {{2,3}} %e A326751 52: {{1,2},{1,3},{2,3}} %e A326751 64: {{1,2,3}} %e A326751 128: {{4}} %e A326751 256: {{1,4}} %e A326751 512: {{2,4}} %e A326751 772: {{1,2},{1,4},{2,4}} %e A326751 816: {{1,3},{2,3},{1,4},{2,4}} %e A326751 820: {{1,2},{1,3},{2,3},{1,4},{2,4}} %e A326751 832: {{1,2,3},{1,4},{2,4}} %e A326751 1024: {{1,2,4}} %e A326751 1072: {{1,3},{2,3},{1,2,4}} %e A326751 1088: {{1,2,3},{1,2,4}} %e A326751 2048: {{3,4}} %e A326751 2320: {{1,3},{1,4},{3,4}} %e A326751 2340: {{1,2},{2,3},{1,4},{3,4}} %e A326751 2356: {{1,2},{1,3},{2,3},{1,4},{3,4}} %t A326751 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326751 stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; %t A326751 tvcQ[eds_]:=And@@Table[Length[csm[DeleteCases[eds,i,{2}]]]<=1,{i,Union@@eds}]; %t A326751 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326751 Select[Range[0,1000],stableQ[bpe/@bpe[#],SubsetQ]&&Length[csm[bpe/@bpe[#]]]<=1&&tvcQ[bpe/@bpe[#]]&] %Y A326751 Cf. A000120, A002218, A013922 (2-vertex-connected graphs), A030019, A048143 (clutters), A048793, A070939, A095983, A275307 (spanning blobs), A304118, A304887, A322117, A322397 (2-edge-connected clutters), A326031. %Y A326751 Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326752 (hypertrees), A326754 (covers). %K A326751 nonn %O A326751 1,3 %A A326751 _Gus Wiseman_, Jul 23 2019