This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326753 #25 Jul 17 2024 08:47:59 %S A326753 0,1,1,2,1,1,1,1,1,2,2,3,2,2,2,2,1,1,2,2,1,1,1,1,1,1,2,2,1,1,1,1,1,2, %T A326753 1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A326753 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A326753 Number of connected components of the set-system with BII-number n. %C A326753 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %H A326753 John Tyler Rascoe, <a href="/A326753/b326753.txt">Table of n, a(n) for n = 0..10000</a> %H A326753 John Tyler Rascoe, <a href="/A326753/a326753_3.png">Log scatterplot of a(n)</a>, n=0..32906. %F A326753 a(A072639(n)) = n. - _John Tyler Rascoe_, Jul 15 2024 %e A326753 The set-system {{1,2},{1,4},{3}} with BII-number 268 has two connected components, so a(268) = 2. %t A326753 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326753 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; %t A326753 Table[Length[csm[bpe/@bpe[n]]],{n,0,100}] %o A326753 (Python) %o A326753 from sympy.utilities.iterables import connected_components %o A326753 def bin_i(n): #binary indices %o A326753 return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) %o A326753 def A326753(n): %o A326753 E,a = [],[bin_i(k) for k in bin_i(n)] %o A326753 m = len(a) %o A326753 for i in range(m): %o A326753 for j in a[i]: %o A326753 for k in range(m): %o A326753 if j in a[k]: %o A326753 E.append((i,k)) %o A326753 return(len(connected_components((list(range(m)),E)))) # _John Tyler Rascoe_, Jul 16 2024 %Y A326753 Positions of 0's and 1's are A326749. %Y A326753 Cf. A000120, A001187, A029931, A048143, A048793, A070939, A072639, A304716, A305078, A305079 (same for MM-numbers), A323818, A326031, A326702. %Y A326753 Ranking sequences using BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers). %K A326753 nonn,base %O A326753 0,4 %A A326753 _Gus Wiseman_, Jul 23 2019