A326755 E.g.f.: Product_{k>=1} 1/(1 - x^(3*k-1)/(3*k-1)).
1, 0, 1, 0, 6, 24, 90, 504, 7560, 18144, 485352, 4626720, 32033232, 516559680, 9142044912, 64700161344, 1804378343040, 29722011830784, 308081755013760, 8202581858225664, 184073277074529024, 2067986628774743040, 75069447974837132544, 1673053361596502645760
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..448
- D. H. Lehmer, On reciprocally weighted partitions, Acta Arithmetica XXI (1972), 379-388 (Theorem 7 needs a correction).
Programs
-
Mathematica
nmax = 25; CoefficientList[Series[1/Product[(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3] + 1}], {x, 0, nmax}], x] * Range[0, nmax]!
Formula
a(n) ~ 3^(1/6) * exp(-gamma/3) * Gamma(1/3) * n! / (2*Pi*n^(2/3)).
a(n) ~ exp(-gamma/3) * n! / (3^(1/3) * Gamma(2/3) * n^(2/3)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.
Comments