This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326783 #7 Jul 27 2019 14:57:51 %S A326783 0,1,2,3,4,8,9,10,11,16,20,32,36,48,52,64,128,129,130,131,136,137,138, %T A326783 139,256,260,272,276,288,292,304,308,512,516,528,532,544,548,560,564, %U A326783 768,772,784,788,800,804,816,820,1024,1088,2048,2052,2064,2068,2080 %N A326783 BII-numbers of uniform set-systems. %C A326783 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. A set-system is uniform if all edges have the same size. %C A326783 Alternatively, these are numbers whose binary indices all have the same binary weight, where the binary weight of a nonnegative integer is the numbers of 1's in its binary digits. %e A326783 The sequence of all uniform set-systems together with their BII-numbers begins: %e A326783 0: {} %e A326783 1: {{1}} %e A326783 2: {{2}} %e A326783 3: {{1},{2}} %e A326783 4: {{1,2}} %e A326783 8: {{3}} %e A326783 9: {{1},{3}} %e A326783 10: {{2},{3}} %e A326783 11: {{1},{2},{3}} %e A326783 16: {{1,3}} %e A326783 20: {{1,2},{1,3}} %e A326783 32: {{2,3}} %e A326783 36: {{1,2},{2,3}} %e A326783 48: {{1,3},{2,3}} %e A326783 52: {{1,2},{1,3},{2,3}} %e A326783 64: {{1,2,3}} %e A326783 128: {{4}} %e A326783 129: {{1},{4}} %e A326783 130: {{2},{4}} %e A326783 131: {{1},{2},{4}} %t A326783 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326783 Select[Range[0,100],SameQ@@Length/@bpe/@bpe[#]&] %Y A326783 Cf. A000120, A029931, A048793, A070939, A047966, A306017, A306021, A319269, A320324, A326031, A326784 (regular), A326785 (uniform regular), A326788. %K A326783 nonn %O A326783 1,3 %A A326783 _Gus Wiseman_, Jul 25 2019