This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326784 #5 Jul 27 2019 14:57:51 %S A326784 0,1,2,3,4,7,8,9,10,11,12,16,18,25,30,32,33,42,45,51,52,63,64,75,76, %T A326784 82,94,97,109,115,116,127,128,129,130,131,132,136,137,138,139,140,144, %U A326784 146,160,161,192,256,258,264,266,288,385,390,408,427,428,434,458 %N A326784 BII-numbers of regular set-systems. %C A326784 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. A set-system is regular if all vertices appear the same number of times. %e A326784 The sequence of all regular set-systems together with their BII-numbers begins: %e A326784 0: {} %e A326784 1: {{1}} %e A326784 2: {{2}} %e A326784 3: {{1},{2}} %e A326784 4: {{1,2}} %e A326784 7: {{1},{2},{1,2}} %e A326784 8: {{3}} %e A326784 9: {{1},{3}} %e A326784 10: {{2},{3}} %e A326784 11: {{1},{2},{3}} %e A326784 12: {{1,2},{3}} %e A326784 16: {{1,3}} %e A326784 18: {{2},{1,3}} %e A326784 25: {{1},{3},{1,3}} %e A326784 30: {{2},{1,2},{3},{1,3}} %e A326784 32: {{2,3}} %e A326784 33: {{1},{2,3}} %e A326784 42: {{2},{3},{2,3}} %e A326784 45: {{1},{1,2},{3},{2,3}} %e A326784 51: {{1},{2},{1,3},{2,3}} %t A326784 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326784 Select[Range[0,100],SameQ@@Length/@Split[Sort[Join@@bpe/@bpe[#]]]&] %Y A326784 Cf. A000120, A001511, A005176, A029931, A048793, A070939, A295193, A322554, A326031, A326701, A326783 (uniform), A326785 (uniform regular). %K A326784 nonn %O A326784 1,3 %A A326784 _Gus Wiseman_, Jul 25 2019