This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326788 #7 Jul 27 2019 14:57:51 %S A326788 0,4,16,20,32,36,48,52,256,260,272,276,288,292,304,308,512,516,528, %T A326788 532,544,548,560,564,768,772,784,788,800,804,816,820,2048,2052,2064, %U A326788 2068,2080,2084,2096,2100,2304,2308,2320,2324,2336,2340,2352,2356,2560,2564 %N A326788 BII-numbers of simple labeled graphs. %C A326788 A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges. %C A326788 Also numbers whose binary indices all belong to A018900. %e A326788 The sequence of all simple labeled graphs together with their BII-numbers begins: %e A326788 0: {} %e A326788 4: {{1,2}} %e A326788 16: {{1,3}} %e A326788 20: {{1,2},{1,3}} %e A326788 32: {{2,3}} %e A326788 36: {{1,2},{2,3}} %e A326788 48: {{1,3},{2,3}} %e A326788 52: {{1,2},{1,3},{2,3}} %e A326788 256: {{1,4}} %e A326788 260: {{1,2},{1,4}} %e A326788 272: {{1,3},{1,4}} %e A326788 276: {{1,2},{1,3},{1,4}} %e A326788 288: {{2,3},{1,4}} %e A326788 292: {{1,2},{2,3},{1,4}} %e A326788 304: {{1,3},{2,3},{1,4}} %e A326788 308: {{1,2},{1,3},{2,3},{1,4}} %e A326788 512: {{2,4}} %e A326788 516: {{1,2},{2,4}} %e A326788 528: {{1,3},{2,4}} %e A326788 532: {{1,2},{1,3},{2,4}} %t A326788 bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; %t A326788 Select[Range[0,100],SameQ[2,##]&@@Length/@bpe/@bpe[#]&] %Y A326788 Cf. A000120, A006125, A006129, A018900, A048793, A062880, A070939, A309356 (same for MM-numbers), A322551, A326031, A326702. %Y A326788 Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers). %K A326788 nonn %O A326788 1,2 %A A326788 _Gus Wiseman_, Jul 25 2019