cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326793 The number of small Schröder paths such that the area between the path and the x-axis contains n up-triangles.

This page as a plain text file.
%I A326793 #10 Jul 29 2019 12:00:28
%S A326793 1,1,2,5,12,30,75,188,472,1186,2981,7494,18842,47376,119126,299545,
%T A326793 753220,1894018,4762640,11976010,30114592,75725485,190417684,
%U A326793 478820320,1204031670,3027633300,7613224740,19144059492,48139261637,121050006438
%N A326793 The number of small Schröder paths such that the area between the path and the x-axis contains n up-triangles.
%C A326793 We define two types of plane triangles - up-triangles with vertices at the integer lattice points (x, y), (x+1, y+1) and (x+2, y) and down-triangles with vertices at the integer lattice points (x, y), (x-1, y+1) and (x+1, y+1). The area beneath a small Schröder path may be decomposed in a unique manner into a collection of up- and down-triangles. This decomposition produces a triangle stack in the sense of A224704. Here we are counting triangle stacks containing n up-triangles. See the Links section for an illustration.
%H A326793 P. Bala, <a href="/A326793/a326793.pdf">Illustration for a(3) = 5</a>
%F A326793 O.g.f. as a continued fraction: (u marks up-triangles)
%F A326793 A(u) = 1/(1 - u/(1 - u - u^2/(1 - u^2 - u^3/(1 - u^3 - u^4/(1 - u^4 - (...) ))))) = 1 + u + 2*u^2 + 5*u^3 + 12*u^4 + ....
%F A326793 A(u) = 1/(1 - u/(1 - (u + u^2)/(1 - u^3/(1 - (u^2 + u^4)/(1 - u^5/(1 - (u^3 + u^6)/(1 - u^7/( (...) )))))))).
%F A326793 A(u) = 1/(2 - (1 + u)/(2 - (1 + u^2)/(2 - (1 + u^3)/(2 - (...) )))).
%F A326793 A(u) = N(u)/D(u), where N(u) = Sum_{n >= 0} u^(n^2+n)/ Product_{k = 1..n} ((1 - u^k)^2) and D(u) = Sum_{n >= 0} u^(n^2)/ Product_{k = 1..n} ((1 - u^k)^2).
%F A326793 a(n) ~ c*d^n, where c = 0.29475 98606 22204 98206 41002 ..., d = 2.51457 96438 78729 18851 04371 ....
%F A326793 Row sums of A326792.
%Y A326793 Cf. A224704, A326792.
%K A326793 nonn,easy
%O A326793 0,3
%A A326793 _Peter Bala_, Jul 25 2019