This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326836 #5 Jul 29 2019 13:54:28 %S A326836 2,3,4,5,7,8,9,11,12,13,16,17,19,23,25,27,29,30,31,32,36,37,40,41,43, %T A326836 47,48,49,53,59,61,63,64,67,70,71,73,79,81,83,84,89,97,101,103,107, %U A326836 108,109,112,113,121,125,127,128,131,135,137,139,144,149,150,151 %N A326836 Heinz numbers of integer partitions whose maximum part divides their sum. %C A326836 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose maximum prime index divides their sum of prime indices. %C A326836 The enumeration of these partitions by sum is given by A067538. %e A326836 The sequence of terms together with their prime indices begins: %e A326836 2: {1} %e A326836 3: {2} %e A326836 4: {1,1} %e A326836 5: {3} %e A326836 7: {4} %e A326836 8: {1,1,1} %e A326836 9: {2,2} %e A326836 11: {5} %e A326836 12: {1,1,2} %e A326836 13: {6} %e A326836 16: {1,1,1,1} %e A326836 17: {7} %e A326836 19: {8} %e A326836 23: {9} %e A326836 25: {3,3} %e A326836 27: {2,2,2} %e A326836 29: {10} %e A326836 30: {1,2,3} %e A326836 31: {11} %e A326836 32: {1,1,1,1,1} %t A326836 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326836 Select[Range[200],Divisible[Total[primeMS[#]],Max[primeMS[#]]]&] %Y A326836 Cf. A018818, A047993, A056239, A061395, A067538, A112798, A316413. %Y A326836 Cf. A326837, A326838, A326839/A326840, A326841, A326843, A326850. %K A326836 nonn %O A326836 1,1 %A A326836 _Gus Wiseman_, Jul 26 2019