cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326836 Heinz numbers of integer partitions whose maximum part divides their sum.

This page as a plain text file.
%I A326836 #5 Jul 29 2019 13:54:28
%S A326836 2,3,4,5,7,8,9,11,12,13,16,17,19,23,25,27,29,30,31,32,36,37,40,41,43,
%T A326836 47,48,49,53,59,61,63,64,67,70,71,73,79,81,83,84,89,97,101,103,107,
%U A326836 108,109,112,113,121,125,127,128,131,135,137,139,144,149,150,151
%N A326836 Heinz numbers of integer partitions whose maximum part divides their sum.
%C A326836 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose maximum prime index divides their sum of prime indices.
%C A326836 The enumeration of these partitions by sum is given by A067538.
%e A326836 The sequence of terms together with their prime indices begins:
%e A326836     2: {1}
%e A326836     3: {2}
%e A326836     4: {1,1}
%e A326836     5: {3}
%e A326836     7: {4}
%e A326836     8: {1,1,1}
%e A326836     9: {2,2}
%e A326836    11: {5}
%e A326836    12: {1,1,2}
%e A326836    13: {6}
%e A326836    16: {1,1,1,1}
%e A326836    17: {7}
%e A326836    19: {8}
%e A326836    23: {9}
%e A326836    25: {3,3}
%e A326836    27: {2,2,2}
%e A326836    29: {10}
%e A326836    30: {1,2,3}
%e A326836    31: {11}
%e A326836    32: {1,1,1,1,1}
%t A326836 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A326836 Select[Range[200],Divisible[Total[primeMS[#]],Max[primeMS[#]]]&]
%Y A326836 Cf. A018818, A047993, A056239, A061395, A067538, A112798, A316413.
%Y A326836 Cf. A326837, A326838, A326839/A326840, A326841, A326843, A326850.
%K A326836 nonn
%O A326836 1,1
%A A326836 _Gus Wiseman_, Jul 26 2019