cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326837 Heinz numbers of integer partitions whose length and maximum both divide their sum.

This page as a plain text file.
%I A326837 #8 Aug 09 2019 12:43:43
%S A326837 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,43,47,49,53,
%T A326837 59,61,64,67,71,73,79,81,83,84,89,97,101,103,107,109,113,121,125,127,
%U A326837 128,131,137,139,149,151,157,163,167,169,173,179,181,191,193,197
%N A326837 Heinz numbers of integer partitions whose length and maximum both divide their sum.
%C A326837 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%C A326837 The enumeration of these partitions by sum is given by A326843.
%H A326837 R. J. Mathar, <a href="/A326837/b326837.txt">Table of n, a(n) for n = 1..505</a>
%e A326837 The sequence of terms together with their prime indices begins:
%e A326837     2: {1}
%e A326837     3: {2}
%e A326837     4: {1,1}
%e A326837     5: {3}
%e A326837     7: {4}
%e A326837     8: {1,1,1}
%e A326837     9: {2,2}
%e A326837    11: {5}
%e A326837    13: {6}
%e A326837    16: {1,1,1,1}
%e A326837    17: {7}
%e A326837    19: {8}
%e A326837    23: {9}
%e A326837    25: {3,3}
%e A326837    27: {2,2,2}
%e A326837    29: {10}
%e A326837    30: {1,2,3}
%e A326837    31: {11}
%e A326837    32: {1,1,1,1,1}
%e A326837    37: {12}
%p A326837 isA326837 := proc(n)
%p A326837     psigsu := A056239(n) ;
%p A326837     psigma := A061395(n) ;
%p A326837     psigle := numtheory[bigomega](n) ;
%p A326837     if modp(psigsu,psigma) = 0 and modp(psigsu,psigle) = 0 then
%p A326837         true;
%p A326837     else
%p A326837         false;
%p A326837     end if;
%p A326837 end proc:
%p A326837 n := 1:
%p A326837 for i from 2 to 3000 do
%p A326837     if isA326837(i) then
%p A326837         printf("%d %d\n",n,i);
%p A326837         n := n+1 ;
%p A326837     end if;
%p A326837 end do: # _R. J. Mathar_, Aug 09 2019
%t A326837 Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&]
%Y A326837 The non-constant case is A326838.
%Y A326837 The strict case is A326851.
%Y A326837 Cf. A001222, A047993, A056239, A061395, A067538, A112798, A316413, A326836, A326843, A326847, A326848.
%K A326837 nonn
%O A326837 1,1
%A A326837 _Gus Wiseman_, Jul 26 2019