This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326837 #8 Aug 09 2019 12:43:43 %S A326837 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,43,47,49,53, %T A326837 59,61,64,67,71,73,79,81,83,84,89,97,101,103,107,109,113,121,125,127, %U A326837 128,131,137,139,149,151,157,163,167,169,173,179,181,191,193,197 %N A326837 Heinz numbers of integer partitions whose length and maximum both divide their sum. %C A326837 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326837 The enumeration of these partitions by sum is given by A326843. %H A326837 R. J. Mathar, <a href="/A326837/b326837.txt">Table of n, a(n) for n = 1..505</a> %e A326837 The sequence of terms together with their prime indices begins: %e A326837 2: {1} %e A326837 3: {2} %e A326837 4: {1,1} %e A326837 5: {3} %e A326837 7: {4} %e A326837 8: {1,1,1} %e A326837 9: {2,2} %e A326837 11: {5} %e A326837 13: {6} %e A326837 16: {1,1,1,1} %e A326837 17: {7} %e A326837 19: {8} %e A326837 23: {9} %e A326837 25: {3,3} %e A326837 27: {2,2,2} %e A326837 29: {10} %e A326837 30: {1,2,3} %e A326837 31: {11} %e A326837 32: {1,1,1,1,1} %e A326837 37: {12} %p A326837 isA326837 := proc(n) %p A326837 psigsu := A056239(n) ; %p A326837 psigma := A061395(n) ; %p A326837 psigle := numtheory[bigomega](n) ; %p A326837 if modp(psigsu,psigma) = 0 and modp(psigsu,psigle) = 0 then %p A326837 true; %p A326837 else %p A326837 false; %p A326837 end if; %p A326837 end proc: %p A326837 n := 1: %p A326837 for i from 2 to 3000 do %p A326837 if isA326837(i) then %p A326837 printf("%d %d\n",n,i); %p A326837 n := n+1 ; %p A326837 end if; %p A326837 end do: # _R. J. Mathar_, Aug 09 2019 %t A326837 Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&] %Y A326837 The non-constant case is A326838. %Y A326837 The strict case is A326851. %Y A326837 Cf. A001222, A047993, A056239, A061395, A067538, A112798, A316413, A326836, A326843, A326847, A326848. %K A326837 nonn %O A326837 1,1 %A A326837 _Gus Wiseman_, Jul 26 2019