This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326838 #6 Jul 29 2019 13:54:42 %S A326838 30,84,264,273,286,325,351,364,390,441,490,525,624,756,784,810,840, %T A326838 874,900,988,1000,1173,1197,1254,1330,1425,1495,1632,1771,2079,2156, %U A326838 2178,2204,2294,2310,2420,2475,2750,2958,3219,3393,3648,3726,3770,3864,3944,4042 %N A326838 Heinz numbers of non-constant integer partitions whose length and maximum both divide their sum. %C A326838 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326838 The enumeration of these partitions by sum is given by A326852. %e A326838 The sequence of terms together with their prime indices begins: %e A326838 30: {1,2,3} %e A326838 84: {1,1,2,4} %e A326838 264: {1,1,1,2,5} %e A326838 273: {2,4,6} %e A326838 286: {1,5,6} %e A326838 325: {3,3,6} %e A326838 351: {2,2,2,6} %e A326838 364: {1,1,4,6} %e A326838 390: {1,2,3,6} %e A326838 441: {2,2,4,4} %e A326838 490: {1,3,4,4} %e A326838 525: {2,3,3,4} %e A326838 624: {1,1,1,1,2,6} %e A326838 756: {1,1,2,2,2,4} %e A326838 784: {1,1,1,1,4,4} %e A326838 810: {1,2,2,2,2,3} %e A326838 840: {1,1,1,2,3,4} %e A326838 874: {1,8,9} %e A326838 900: {1,1,2,2,3,3} %e A326838 988: {1,1,6,8} %t A326838 Select[Range[1000],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},!SameQ@@y&&Divisible[Total[y],Max[y]]&&Divisible[Total[y],Length[y]]]&] %Y A326838 The possibly constant case is A326837. %Y A326838 Cf. A001222, A047993, A056239, A061395, A067538, A112798, A316413, A326836, A326843, A326847, A326848, A326851. %K A326838 nonn %O A326838 1,1 %A A326838 _Gus Wiseman_, Jul 26 2019