A326841 Heinz numbers of integer partitions of m >= 0 using divisors of m.
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 30, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 108, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 11: {5} 12: {1,1,2} 13: {6} 16: {1,1,1,1} 17: {7} 19: {8} 23: {9} 25: {3,3} 27: {2,2,2} 29: {10} 30: {1,2,3} 31: {11}
Links
- R. J. Mathar, Table of n, a(n) for n = 1..543
Crossrefs
Programs
-
Maple
isA326841 := proc(n) local ifs,psigsu,p,psig ; psigsu := A056239(n) ; for ifs in ifactors(n)[2] do p := op(1,ifs) ; psig := numtheory[pi](p) ; if modp(psigsu,psig) <> 0 then return false; end if; end do: true; end proc: for i from 1 to 3000 do if isA326841(i) then printf("%d %d\n",n,i); n := n+1 ; end if; end do: # R. J. Mathar, Aug 09 2019
-
Mathematica
Select[Range[100],With[{y=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},And@@IntegerQ/@(Total[y]/y)]&]
Comments