This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326842 #8 Feb 20 2021 16:09:37 %S A326842 1,1,2,2,3,2,5,2,5,3,5,2,21,2,5,6,9,2,22,2,21,6,5,2,134,3,5,6,23,2, %T A326842 157,2,27,6,5,6,478,2,5,6,208,2,224,2,31,63,5,2,1720,3,30,6,34,2,322, %U A326842 6,295,6,5,2,13899,2,5,68,126,8,429,2,42,6,358,2,19959,2 %N A326842 Number of integer partitions of n whose parts all divide n and whose length also divides n. %C A326842 The Heinz numbers of these partitions are given by A326847. %H A326842 Fausto A. C. Cariboni, <a href="/A326842/b326842.txt">Table of n, a(n) for n = 0..419</a> %e A326842 The a(1) = 1 through a(8) = 5 partitions: %e A326842 (1) (2) (3) (4) (5) (6) (7) (8) %e A326842 (11) (111) (22) (11111) (33) (1111111) (44) %e A326842 (1111) (222) (2222) %e A326842 (321) (4211) %e A326842 (111111) (11111111) %e A326842 The a(12) = 21 partitions: %e A326842 (12) %e A326842 (6,6) %e A326842 (4,4,4) %e A326842 (6,3,3) %e A326842 (6,4,2) %e A326842 (3,3,3,3) %e A326842 (4,3,3,2) %e A326842 (4,4,2,2) %e A326842 (4,4,3,1) %e A326842 (6,2,2,2) %e A326842 (6,3,2,1) %e A326842 (6,4,1,1) %e A326842 (2,2,2,2,2,2) %e A326842 (3,2,2,2,2,1) %e A326842 (3,3,2,2,1,1) %e A326842 (3,3,3,1,1,1) %e A326842 (4,2,2,2,1,1) %e A326842 (4,3,2,1,1,1) %e A326842 (4,4,1,1,1,1) %e A326842 (6,2,1,1,1,1) %e A326842 (1,1,1,1,1,1,1,1,1,1,1,1) %t A326842 Table[Length[Select[IntegerPartitions[n,All,Divisors[n]],Divisible[n,Length[#]]&]],{n,1,30}] %Y A326842 Partitions using divisors are A018818. %Y A326842 Partitions whose length divides their sum are A067538. %Y A326842 Cf. A047993, A102627, A316413, A326841, A326843, A326847. %K A326842 nonn %O A326842 0,3 %A A326842 _Gus Wiseman_, Jul 26 2019