This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326843 #11 Jan 31 2021 02:58:55 %S A326843 1,1,2,2,3,2,5,2,5,3,5,2,22,2,5,11,16,2,36,2,46,22,5,2,209,3,5,42,130, %T A326843 2,434,2,217,77,5,52,1400,2,5,135,1749,2,1782,2,957,2151,5,2,8355,3, %U A326843 1859,385,2388,2,6726,2765,10641,627,5,2,68049,2,5,13424,17142 %N A326843 Number of integer partitions of n whose length and maximum both divide n. %C A326843 The Heinz numbers of these partitions are given by A326837. %H A326843 Fausto A. C. Cariboni, <a href="/A326843/b326843.txt">Table of n, a(n) for n = 0..180</a> %e A326843 The a(1) = 1 through a(8) = 5 partitions: %e A326843 (1) (2) (3) (4) (5) (6) (7) (8) %e A326843 (11) (111) (22) (11111) (33) (1111111) (44) %e A326843 (1111) (222) (2222) %e A326843 (321) (4211) %e A326843 (111111) (11111111) %e A326843 The a(12) = 22 partitions: %e A326843 (12) %e A326843 (6,6) %e A326843 (4,4,4) %e A326843 (6,3,3) %e A326843 (6,4,2) %e A326843 (6,5,1) %e A326843 (3,3,3,3) %e A326843 (4,3,3,2) %e A326843 (4,4,2,2) %e A326843 (4,4,3,1) %e A326843 (6,2,2,2) %e A326843 (6,3,2,1) %e A326843 (6,4,1,1) %e A326843 (2,2,2,2,2,2) %e A326843 (3,2,2,2,2,1) %e A326843 (3,3,2,2,1,1) %e A326843 (3,3,3,1,1,1) %e A326843 (4,2,2,2,1,1) %e A326843 (4,3,2,1,1,1) %e A326843 (4,4,1,1,1,1) %e A326843 (6,2,1,1,1,1) %e A326843 (1,1,1,1,1,1,1,1,1,1,1,1) %t A326843 Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]]],{n,0,30}] %Y A326843 The strict case is A326851. %Y A326843 The non-constant case is A326852. %Y A326843 The case where all parts (not just the maximum) divide n is A326842. %Y A326843 Cf. A018818, A047993, A067538, A326837, A326849. %K A326843 nonn %O A326843 0,3 %A A326843 _Gus Wiseman_, Jul 26 2019