cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326843 Number of integer partitions of n whose length and maximum both divide n.

This page as a plain text file.
%I A326843 #11 Jan 31 2021 02:58:55
%S A326843 1,1,2,2,3,2,5,2,5,3,5,2,22,2,5,11,16,2,36,2,46,22,5,2,209,3,5,42,130,
%T A326843 2,434,2,217,77,5,52,1400,2,5,135,1749,2,1782,2,957,2151,5,2,8355,3,
%U A326843 1859,385,2388,2,6726,2765,10641,627,5,2,68049,2,5,13424,17142
%N A326843 Number of integer partitions of n whose length and maximum both divide n.
%C A326843 The Heinz numbers of these partitions are given by A326837.
%H A326843 Fausto A. C. Cariboni, <a href="/A326843/b326843.txt">Table of n, a(n) for n = 0..180</a>
%e A326843 The a(1) = 1 through a(8) = 5 partitions:
%e A326843   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A326843        (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
%e A326843                     (1111)           (222)                (2222)
%e A326843                                      (321)                (4211)
%e A326843                                      (111111)             (11111111)
%e A326843 The a(12) = 22 partitions:
%e A326843   (12)
%e A326843   (6,6)
%e A326843   (4,4,4)
%e A326843   (6,3,3)
%e A326843   (6,4,2)
%e A326843   (6,5,1)
%e A326843   (3,3,3,3)
%e A326843   (4,3,3,2)
%e A326843   (4,4,2,2)
%e A326843   (4,4,3,1)
%e A326843   (6,2,2,2)
%e A326843   (6,3,2,1)
%e A326843   (6,4,1,1)
%e A326843   (2,2,2,2,2,2)
%e A326843   (3,2,2,2,2,1)
%e A326843   (3,3,2,2,1,1)
%e A326843   (3,3,3,1,1,1)
%e A326843   (4,2,2,2,1,1)
%e A326843   (4,3,2,1,1,1)
%e A326843   (4,4,1,1,1,1)
%e A326843   (6,2,1,1,1,1)
%e A326843   (1,1,1,1,1,1,1,1,1,1,1,1)
%t A326843 Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[n,Length[#]]&&Divisible[n,Max[#]]&]]],{n,0,30}]
%Y A326843 The strict case is A326851.
%Y A326843 The non-constant case is A326852.
%Y A326843 The case where all parts (not just the maximum) divide n is A326842.
%Y A326843 Cf. A018818, A047993, A067538, A326837, A326849.
%K A326843 nonn
%O A326843 0,3
%A A326843 _Gus Wiseman_, Jul 26 2019