This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326846 #11 Jan 18 2020 18:23:30 %S A326846 0,1,2,2,3,4,4,3,4,6,5,6,6,8,6,4,7,6,8,9,8,10,9,8,6,12,6,12,10,9,11,5, %T A326846 10,14,8,8,12,16,12,12,13,12,14,15,9,18,15,10,8,9,14,18,16,8,10,16,16, %U A326846 20,17,12,18,22,12,6,12,15,19,21,18,12,20,10,21,24,9,24,10,18,22,15,8,26,23,16,14,28,20,20,24 %N A326846 Length times maximum of the integer partition with Heinz number n. %C A326846 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the minimal rectangle containing the Young digram of the integer partition with Heinz number n. %H A326846 Antti Karttunen, <a href="/A326846/b326846.txt">Table of n, a(n) for n = 1..65537</a> %H A326846 <a href="/index/He#Heinz">Index entries for sequences related to Heinz numbers</a> %H A326846 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A326846 a(n) = A001222(n) * A061395(n). %t A326846 Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[-1,1]]],{n,100}] %o A326846 (PARI) A326846(n) = if(1==n, 0, bigomega(n)*primepi(vecmax(factor(n)[, 1]))); \\ _Antti Karttunen_, Jan 18 2020 %Y A326846 Cf. A047993, A056239, A061395, A106529, A112798. %Y A326846 Cf. A316413, A326836, A326837, A326844, A326845, A326848, A326849. %Y A326846 Cf. also A331297. %K A326846 nonn %O A326846 1,3 %A A326846 _Gus Wiseman_, Jul 26 2019 %E A326846 More terms from _Antti Karttunen_, Jan 18 2020