This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326847 #14 Aug 09 2019 12:35:51 %S A326847 2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,29,30,31,32,37,41,43,47,49,53, %T A326847 59,61,64,67,71,73,79,81,83,84,89,97,101,103,107,109,113,121,125,127, %U A326847 128,131,137,139,149,151,157,163,167,169,173,179,181,191,193,197 %N A326847 Heinz numbers of integer partitions of m >= 0 using divisors of m whose length also divides m. %C A326847 First differs from A071139, A089352 and A086486 in lacking 60. First differs from A326837 in lacking 268. %C A326847 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326847 The enumeration of these partitions by sum is given by A326842. %H A326847 R. J. Mathar, <a href="/A326847/b326847.txt">Table of n, a(n) for n = 1..489</a> %F A326847 Intersection of A326841 and A316413. %e A326847 The sequence of terms together with their prime indices begins: %e A326847 2: {1} %e A326847 3: {2} %e A326847 4: {1,1} %e A326847 5: {3} %e A326847 7: {4} %e A326847 8: {1,1,1} %e A326847 9: {2,2} %e A326847 11: {5} %e A326847 13: {6} %e A326847 16: {1,1,1,1} %e A326847 17: {7} %e A326847 19: {8} %e A326847 23: {9} %e A326847 25: {3,3} %e A326847 27: {2,2,2} %e A326847 29: {10} %e A326847 30: {1,2,3} %e A326847 31: {11} %e A326847 32: {1,1,1,1,1} %e A326847 37: {12} %p A326847 isA326847 := proc(n) %p A326847 psigsu := A056239(n) ; %p A326847 for ifs in ifactors(n)[2] do %p A326847 p := op(1,ifs) ; %p A326847 psig := numtheory[pi](p) ; %p A326847 if modp(psigsu,psig) <> 0 then %p A326847 return false; %p A326847 end if; %p A326847 end do: %p A326847 psigle := numtheory[bigomega](n) ; %p A326847 if modp(psigsu,psigle) = 0 then %p A326847 true; %p A326847 else %p A326847 false; %p A326847 end if; %p A326847 end proc: %p A326847 n := 1: %p A326847 for i from 2 to 3000 do %p A326847 if isA326847(i) then %p A326847 printf("%d %d\n",n,i); %p A326847 n := n+1 ; %p A326847 end if; %p A326847 end do: # _R. J. Mathar_, Aug 09 2019 %t A326847 Select[Range[2,100],With[{y=Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]},Divisible[Total[y],Length[y]]&&And@@IntegerQ/@(Total[y]/y)]&] %Y A326847 Intersection of A326841 and A316413. %Y A326847 Cf. A001222, A018818, A056239, A067538, A112798, A316413, A326836, A326842. %K A326847 nonn %O A326847 1,1 %A A326847 _Gus Wiseman_, Jul 26 2019