This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326848 #5 Jul 29 2019 13:55:37 %S A326848 1,2,3,4,5,7,8,9,11,13,16,17,19,23,25,27,28,29,31,32,37,40,41,43,47, %T A326848 49,53,59,61,64,67,71,73,78,79,81,83,84,89,97,101,103,107,109,113,121, %U A326848 125,127,128,131,137,139,149,151,157,163,167,169,171,173,179,181 %N A326848 Heinz numbers of integer partitions of m >= 0 whose length times maximum is a multiple of m. %C A326848 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326848 The enumeration of these partitions by sum is given by A326849. %e A326848 The sequence of terms together with their prime indices begins: %e A326848 1: {} %e A326848 2: {1} %e A326848 3: {2} %e A326848 4: {1,1} %e A326848 5: {3} %e A326848 7: {4} %e A326848 8: {1,1,1} %e A326848 9: {2,2} %e A326848 11: {5} %e A326848 13: {6} %e A326848 16: {1,1,1,1} %e A326848 17: {7} %e A326848 19: {8} %e A326848 23: {9} %e A326848 25: {3,3} %e A326848 27: {2,2,2} %e A326848 28: {1,1,4} %e A326848 29: {10} %e A326848 31: {11} %e A326848 32: {1,1,1,1,1} %e A326848 37: {12} %t A326848 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A326848 Select[Range[100],#==1||Divisible[Max[primeMS[#]]*Length[primeMS[#]],Total[primeMS[#]]]&] %Y A326848 Cf. A001222, A047993, A056239, A061395, A067538, A112798, A316413, A326836, A326843, A326847, A326849, A326851. %K A326848 nonn %O A326848 1,2 %A A326848 _Gus Wiseman_, Jul 26 2019