cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326849 Number of integer partitions of n whose length times maximum is a multiple of n.

This page as a plain text file.
%I A326849 #16 Feb 14 2021 02:19:30
%S A326849 1,1,2,2,3,2,6,2,5,5,10,2,19,2,18,26,24,2,55,2,87,82,60,2,207,86,106,
%T A326849 192,363,2,668,2,527,616,304,928,1827,2,498,1518,3229,2,4294,2,4445,
%U A326849 6307,1266,2,11560,3629,8280,7802,13633,2,19120,18938,31385,16618,4584
%N A326849 Number of integer partitions of n whose length times maximum is a multiple of n.
%C A326849 The Heinz numbers of these partitions are given by A326848.
%H A326849 Fausto A. C. Cariboni, <a href="/A326849/b326849.txt">Table of n, a(n) for n = 0..160</a>
%e A326849 The a(1) = 1 through a(9) = 5 partitions:
%e A326849   1   2    3     4      5       6        7         8          9
%e A326849       11   111   22     11111   33       1111111   44         333
%e A326849                  1111           222                2222       621
%e A326849                                 411                4211       321111
%e A326849                                 3111               11111111   111111111
%e A326849                                 111111
%e A326849 For example, (4,1,1) is such a partition because its length times maximum is 3 * 4 = 12, which is a multiple of 6.
%t A326849 Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[Max[#]*Length[#],n]&]]],{n,0,30}]
%Y A326849 Cf. A018818, A047993, A067538, A326837, A326842, A326843.
%K A326849 nonn
%O A326849 0,3
%A A326849 _Gus Wiseman_, Jul 26 2019