This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326849 #16 Feb 14 2021 02:19:30 %S A326849 1,1,2,2,3,2,6,2,5,5,10,2,19,2,18,26,24,2,55,2,87,82,60,2,207,86,106, %T A326849 192,363,2,668,2,527,616,304,928,1827,2,498,1518,3229,2,4294,2,4445, %U A326849 6307,1266,2,11560,3629,8280,7802,13633,2,19120,18938,31385,16618,4584 %N A326849 Number of integer partitions of n whose length times maximum is a multiple of n. %C A326849 The Heinz numbers of these partitions are given by A326848. %H A326849 Fausto A. C. Cariboni, <a href="/A326849/b326849.txt">Table of n, a(n) for n = 0..160</a> %e A326849 The a(1) = 1 through a(9) = 5 partitions: %e A326849 1 2 3 4 5 6 7 8 9 %e A326849 11 111 22 11111 33 1111111 44 333 %e A326849 1111 222 2222 621 %e A326849 411 4211 321111 %e A326849 3111 11111111 111111111 %e A326849 111111 %e A326849 For example, (4,1,1) is such a partition because its length times maximum is 3 * 4 = 12, which is a multiple of 6. %t A326849 Table[If[n==0,1,Length[Select[IntegerPartitions[n],Divisible[Max[#]*Length[#],n]&]]],{n,0,30}] %Y A326849 Cf. A018818, A047993, A067538, A326837, A326842, A326843. %K A326849 nonn %O A326849 0,3 %A A326849 _Gus Wiseman_, Jul 26 2019