cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326850 Number of strict integer partitions of n whose maximum part divides n.

This page as a plain text file.
%I A326850 #9 Dec 17 2020 05:41:51
%S A326850 0,1,1,1,1,1,2,1,2,1,3,1,4,1,5,2,6,1,10,1,10,5,12,1,23,1,18,15,23,1,
%T A326850 49,1,34,36,38,1,106,1,54,79,81,1,189,1,124,162,104,1,412,1,145,307,
%U A326850 289,1,608,12,437,559,256,1,1432,1,340,981,976,79,1730,1
%N A326850 Number of strict integer partitions of n whose maximum part divides n.
%H A326850 Fausto A. C. Cariboni, <a href="/A326850/b326850.txt">Table of n, a(n) for n = 0..300</a>
%e A326850 The initial terms count the following partitions:
%e A326850    1: (1)
%e A326850    2: (2)
%e A326850    3: (3)
%e A326850    4: (4)
%e A326850    5: (5)
%e A326850    6: (6)
%e A326850    6: (3,2,1)
%e A326850    7: (7)
%e A326850    8: (8)
%e A326850    8: (4,3,1)
%e A326850    9: (9)
%e A326850   10: (10)
%e A326850   10: (5,4,1)
%e A326850   10: (5,3,2)
%e A326850   11: (11)
%e A326850   12: (12)
%e A326850   12: (6,5,1)
%e A326850   12: (6,4,2)
%e A326850   12: (6,3,2,1)
%e A326850   13: (13)
%e A326850   14: (14)
%e A326850   14: (7,6,1)
%e A326850   14: (7,5,2)
%e A326850   14: (7,4,3)
%e A326850   14: (7,4,2,1)
%e A326850   15: (15)
%e A326850   15: (5,4,3,2,1)
%t A326850 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&]],{n,0,30}]
%Y A326850 Positions of 1's appear to be A308168.
%Y A326850 The non-strict case is given by A067538.
%Y A326850 Cf. A018818, A033630, A067538, A102627, A200745, A316413, A326625, A326836, A326843, A326851.
%K A326850 nonn
%O A326850 0,7
%A A326850 _Gus Wiseman_, Jul 28 2019