cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326851 Number of strict integer partitions of n whose length and maximum both divide n.

This page as a plain text file.
%I A326851 #9 Dec 20 2020 14:50:16
%S A326851 1,1,1,1,1,1,2,1,1,1,1,1,4,1,1,2,3,1,5,1,6,1,1,1,16,1,1,1,12,1,33,1,
%T A326851 15,1,1,1,60,1,1,1,51,1,81,1,31,57,1,1,216,1,55,1,45,1,230,1,223,1,1,
%U A326851 1,800,1,1,314,273,1,607,1,81,1,315,1,2404,1,1,319
%N A326851 Number of strict integer partitions of n whose length and maximum both divide n.
%H A326851 Fausto A. C. Cariboni, <a href="/A326851/b326851.txt">Table of n, a(n) for n = 0..383</a>
%e A326851 The a(6) = 2 through a(24) = 16 partitions (1 terms not shown):
%e A326851   6       12        15          16        18      20           24
%e A326851   3,2,1   6,4,2     5,4,3,2,1   8,4,3,1   9,5,4   10,5,3,2     12,7,5
%e A326851           6,5,1                 8,5,2,1   9,6,3   10,5,4,1     12,8,4
%e A326851           6,3,2,1                         9,7,2   10,6,3,1     12,9,3
%e A326851                                           9,8,1   10,7,2,1     12,10,2
%e A326851                                                   10,4,3,2,1   12,11,1
%e A326851                                                                8,7,5,4
%e A326851                                                                8,7,6,3
%e A326851                                                                12,5,4,3
%e A326851                                                                12,6,4,2
%e A326851                                                                12,6,5,1
%e A326851                                                                12,7,3,2
%e A326851                                                                12,7,4,1
%e A326851                                                                12,8,3,1
%e A326851                                                                12,9,2,1
%e A326851                                                                8,6,4,3,2,1
%t A326851 Table[If[n==0,1,Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[n,Max[#]]&&Divisible[n,Length[#]]&]]],{n,0,30}]
%Y A326851 The non-strict case is A326843.
%Y A326851 Cf. A018818, A047993, A067538, A326837, A326842, A326849, A326852.
%K A326851 nonn
%O A326851 0,7
%A A326851 _Gus Wiseman_, Jul 26 2019