A326854 BII-numbers of T_0 (costrict), pairwise intersecting set-systems where every two vertices appear together in some edge (cointersecting).
0, 1, 2, 5, 6, 8, 17, 24, 34, 40, 52, 69, 70, 81, 84, 85, 88, 98, 100, 102, 104, 112, 116, 120, 128, 257, 384, 514, 640, 772, 1029, 1030, 1281, 1284, 1285, 1408, 1538, 1540, 1542, 1664, 1792, 1796, 1920, 2056, 2176, 2320, 2592, 2880, 3120, 3152, 3168, 3184
Offset: 1
Keywords
Examples
The sequence of all set-systems that are pairwise intersecting, cointersecting, and costrict, together with their BII-numbers, begins: 0: {} 1: {{1}} 2: {{2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 8: {{3}} 17: {{1},{1,3}} 24: {{3},{1,3}} 34: {{2},{2,3}} 40: {{3},{2,3}} 52: {{1,2},{1,3},{2,3}} 69: {{1},{1,2},{1,2,3}} 70: {{2},{1,2},{1,2,3}} 81: {{1},{1,3},{1,2,3}} 84: {{1,2},{1,3},{1,2,3}} 85: {{1},{1,2},{1,3},{1,2,3}} 88: {{3},{1,3},{1,2,3}} 98: {{2},{2,3},{1,2,3}} 100: {{1,2},{2,3},{1,2,3}} 102: {{2},{1,2},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}]; Select[Range[0,10000],UnsameQ@@dual[bpe/@bpe[#]]&&stableQ[bpe/@bpe[#],Intersection[#1,#2]=={}&]&&stableQ[dual[bpe/@bpe[#]],Intersection[#1,#2]=={}&]&]
Comments