cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326855 E.g.f.: Product_{k>=1} (1 + x^(4*k-1) / (4*k-1)).

This page as a plain text file.
%I A326855 #8 Jul 29 2019 02:58:20
%S A326855 1,0,0,2,0,0,0,720,0,0,172800,3628800,0,0,2641766400,87178291200,0,0,
%T A326855 225422681702400,6402373705728000,0,221172909834240000,
%U A326855 30424079849619456000,1124000727777607680000,0,49241936645495193600000,11321261082950211993600000
%N A326855 E.g.f.: Product_{k>=1} (1 + x^(4*k-1) / (4*k-1)).
%H A326855 Vaclav Kotesovec, <a href="/A326855/b326855.txt">Table of n, a(n) for n = 0..440</a>
%H A326855 Vaclav Kotesovec, <a href="/A326855/a326855.jpg">Graph - the asymptotic ratio (40000 terms)</a>
%F A326855 a(n) ~ Pi * n! / (exp(gamma/4) * Gamma(1/4)^2 * n^(3/4)), where gamma is the Euler-Mascheroni constant A001620 and Gamma() is the Gamma function.
%t A326855 nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
%Y A326855 Cf. A007838, A088994, A326779, A326856, A326857.
%K A326855 nonn
%O A326855 0,4
%A A326855 _Vaclav Kotesovec_, Jul 27 2019