A326860
E.g.f.: Product_{k>=1} (1 + x^(3*k-1)/(3*k-1)) / (1 - x^(3*k-1)/(3*k-1)).
Original entry on oeis.org
1, 0, 2, 0, 12, 48, 180, 2016, 15120, 72576, 1424304, 11249280, 113164128, 2066238720, 22751977248, 303261573888, 6400216892160, 85934653249536, 1440131337066240, 34330891188013056, 549029461368181248, 11212163885207900160, 296439802585781976576
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(3*k-1)/(3*k-1))/(1-x^(3*k-1)/(3*k-1)), {k, 1, Floor[nmax/3]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326862
E.g.f.: Product_{k>=1} (1 + x^(4*k-1)/(4*k-1)) / (1 - x^(4*k-1)/(4*k-1)).
Original entry on oeis.org
1, 0, 0, 4, 0, 0, 160, 1440, 0, 26880, 691200, 7257600, 11827200, 395366400, 14125363200, 185119334400, 442810368000, 24049778688000, 919255538073600, 13662913904640000, 54833495408640000, 3627817738960896000, 142917996623560704000, 2442221696292618240000
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-1)/(4*k-1))/(1-x^(4*k-1)/(4*k-1)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
A326863
E.g.f.: Product_{k>=1} (1 + x^(4*k-3)/(4*k-3)) / (1 - x^(4*k-3)/(4*k-3)).
Original entry on oeis.org
1, 2, 4, 12, 48, 288, 2016, 14112, 112896, 1096704, 12063744, 135894528, 1630734336, 22157549568, 331366920192, 5107664314368, 82057393668096, 1436821272133632, 27168078863794176, 528845513033908224, 10627947138360803328, 228216184936879620096, 5219125284175176794112
Offset: 0
-
nmax = 30; CoefficientList[Series[Product[(1+x^(4*k-3)/(4*k-3))/(1-x^(4*k-3)/(4*k-3)), {k, 1, Floor[nmax/4]+1}], {x, 0, nmax}], x] * Range[0, nmax]!
Showing 1-3 of 3 results.
Comments